高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于智能反射面辅助雷达的恒模多相波形-反射面联合优化算法

谢壮 朱家华 徐舟 范崇祎 金添 黄晓涛

谢壮, 朱家华, 徐舟, 范崇祎, 金添, 黄晓涛. 基于智能反射面辅助雷达的恒模多相波形-反射面联合优化算法[J]. 电子与信息学报, 2023, 45(11): 3848-3859. doi: 10.11999/JEIT230767
引用本文: 谢壮, 朱家华, 徐舟, 范崇祎, 金添, 黄晓涛. 基于智能反射面辅助雷达的恒模多相波形-反射面联合优化算法[J]. 电子与信息学报, 2023, 45(11): 3848-3859. doi: 10.11999/JEIT230767
XIE Zhuang, ZHU Jiahua, XU Zhou, FAN Chongyi, JIN Tian, HUANG Xiaotao. Polyphase Waveform and Reflection Design Based on RIS-Aided Radar System[J]. Journal of Electronics & Information Technology, 2023, 45(11): 3848-3859. doi: 10.11999/JEIT230767
Citation: XIE Zhuang, ZHU Jiahua, XU Zhou, FAN Chongyi, JIN Tian, HUANG Xiaotao. Polyphase Waveform and Reflection Design Based on RIS-Aided Radar System[J]. Journal of Electronics & Information Technology, 2023, 45(11): 3848-3859. doi: 10.11999/JEIT230767

基于智能反射面辅助雷达的恒模多相波形-反射面联合优化算法

doi: 10.11999/JEIT230767
基金项目: 国家自然科学基金(62101573),国防科技大学科研计划项目(ZK20-35)
详细信息
    作者简介:

    谢壮:男,博士生,研究方向为雷达信号处理、波形设计等

    朱家华:男,博士,副研究员,硕士生导师,研究方向为雷达声呐信号处理、波形设计等

    徐舟:男,博士,讲师,研究方向为凸优化理论、波形设计等

    范崇祎:女,博士,副教授,硕士生导师,研究方向为阵列信号处理、波形设计等

    金添:男,博士,教授,博士生导师,研究方向为超宽带雷达成像、智能感知与处理等

    黄晓涛:男,博士,教授,博士生导师,研究方向为雷达成像技术、超宽带雷达成像技术以及阵列信号处理技术等

    通讯作者:

    朱家华 zhujiahua1019@hotmail.com

  • 中图分类号: TN959.1

Polyphase Waveform and Reflection Design Based on RIS-Aided Radar System

Funds: The National Natural Science Foundation of China (62101573), The Scientific Research Project of National University of Defense Technology (ZK20-35)
  • 摘要: 该文通过联合优化雷达发射波形,接收滤波器以及部署在场景中的智能反射面(RIS),来增强雷达系统在杂波环境下的目标检测性能。在雷达波形和RIS相移矢量离散相位约束的前提下,该文采用系统输出信干噪比(SINR)为优化目标来建立RIS辅助下的雷达目标检测性能增强问题。为求解所形成的联合非凸优化问题,该文提出了一种交替优化求解策略,在每一轮迭代中基于优化子最大化的思想次序的两个关于波形和RIS相移矢量的优化子问题。仿真实验证明所提优化算法能够在满足恒模多相约束的情况下,提供高质量的RIS相移矢量-雷达收发波形,使得RIS辅助下的雷达系统目标检测性能得到明显的增强。
  • 图  1  所考虑的RIS辅助雷达探测场景

    图  2  场景涉及的变量示意图

    图  3  集合$ \varPhi $和$ \varPhi ' $等价性解释辅助图

    图  4  实验场景示意图

    图  5  所提算法迭代曲线

    图  6  雷达波形相位性质验证

    图  7  RIS相移矢量相位性质验证

    图  8  波形能量谱密度性质验证

    图  9  SINR 随着 RIS 阵元数目变化情况

    图  10  SINR 随着${\tau _{{{\rm{Rad}},{\rm{pc}}}}}$ 变化情况

    算法1 基于交替优化框架的RIS相移矢量-雷达波形联合优化算法
     输入: 雷达到RIS各个阵元之间的距离$\left\{ {{\tau _{{{\rm{Rad}}},n}}} \right\}_{n = 1}^N$,目标(非
     目标散射体)到RIS各个阵元之间的距离$\left\{ {{\tau _{{{\rm{Tar}}},n}}} \right\}_{n = 1}^N$
     ($\left\{ {{\tau _{{{\rm{Clu}}},k,n}}} \right\}_{n = 1}^N$),雷达到目标(非目标散射体)之间的距离
     ${\tau _{{{\rm{Rad}},{\rm{Tar}}}}}$($ \left\{ {{\tau _{{\rm{Rad}},{\rm{Clu}},k}}} \right\}_{k = 1,n = 1}^{K,N} $),信号无关干扰项目协方差矩阵
     ${{\boldsymbol{R}}_{{\rm{n}}}}$,杂波RCS$ \left\{ {{{\tilde \sigma }_{{{\rm{Clu}}},k}}} \right\}_{k = 1}^K $,RIS可用相位数$ {N_{{\rm{RIS}}}} $,波形可用
     相位数$ {N_{{\rm{WF}}}} $,发射波形能量$ {e_t} $;
     输出:问题$ \mathcal{P} $的解$ \left( {{{\boldsymbol{w}}^ \star },{{\boldsymbol{s}}^ \star },{{\boldsymbol{\phi}} ^ \star }} \right) $;
     1:初始化波形矢量$ {\boldsymbol{s}} $和相移矢量$ {\boldsymbol{\phi}} $的值;
     2:迭代求解$ \left\{ {{\mathcal{P}_{{\boldsymbol{s}},\left( m \right)}}} \right\}_{k = 1}^{ + \infty } $以更新波形矢量$ {\boldsymbol{s}} $;
     3:迭代求解$\left\{ { { {\ddot {\mathcal{P}} }_{\tilde {\boldsymbol{\phi}} ,\left( m \right)} } } \right\}_{m = 1}^{ + \infty }$,并根据$ {\phi _n} = {\tilde \phi _n}/{\tilde \phi _{N + 1}}, $
     $ n = 1,2,\cdots,N $更新相移矢量$ {\boldsymbol{\phi}} $;
     4:重复步骤2—步骤3直到收敛,并记收敛处的波形矢量和RIS
     相移矢量分别为$ {{\boldsymbol{s}}^ \star } $和$ {{\boldsymbol{\phi}} ^ \star } $;
     5:根据${{\boldsymbol{w}} = \alpha {{\boldsymbol{\varPsi}} ^{ - 1}}{{\boldsymbol Z}_{{\rm{Tar}}}}{\boldsymbol{s}}} $计算滤波器矢量$ {{\boldsymbol{w}}^ \star } $
     6:返回:问题$ \mathcal{P} $的解$ \left( {{{\boldsymbol{w}}^ \star },{{\boldsymbol{s}}^ \star },{{\boldsymbol{\phi }}^ \star }} \right) $;
    下载: 导出CSV
  • [1] BLUNT S D and MOKOLE E L. Overview of radar waveform diversity[J]. IEEE Aerospace and Electronic Systems Magazine, 2016, 31(11): 2–42. doi: 10.1109/MAES.2016.160071
    [2] GURBUZ S Z, GRIFFITHS H D, CHARLISH A, et al. An overview of cognitive radar: Past, present, and future[J]. IEEE Aerospace and Electronic Systems Magazine, 2019, 34(12): 6–18. doi: 10.1109/MAES.2019.2953762
    [3] 崔国龙, 余显祥, 杨婧, 等. 认知雷达波形优化设计方法综述[J]. 雷达学报, 2019, 8(5): 537–557. doi: 10.12000/JR19072

    CUI Guolong, YU Xianxiang, YANG Jing, et al. An overview of waveform optimization methods for cognitive radar[J]. Journal of Radars, 2019, 8(5): 537–557. doi: 10.12000/JR19072
    [4] WU Qingqing and ZHANG Rui. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network[J]. IEEE Communications Magazine, 2020, 58(1): 106–112. doi: 10.1109/MCOM.001.1900107
    [5] ZHANG Shuowen and ZHANG Rui. Capacity characterization for intelligent reflecting surface aided MIMO communication[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(8): 1823–1838. doi: 10.1109/JSAC.2020.3000814
    [6] HAN Yu, TANG Wankai, JIN Shi, et al. Large intelligent surface-assisted wireless communication exploiting statistical CSI[J]. IEEE Transactions on Vehicular Technology, 2019, 68(8): 8238–8242. doi: 10.1109/TVT.2019.2923997
    [7] DI RENZO M, ZAPPONE A, DEBBAH M, et al. Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of research, and the road ahead[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(11): 2450–2525. doi: 10.1109/JSAC.2020.3007211
    [8] ELMOSSALLAMY M A, ZHANG Hongliang, SONG Lingyang, et al. Reconfigurable intelligent surfaces for wireless communications: Principles, challenges, and opportunities[J]. IEEE Transactions on Cognitive Communications and Networking, 2020, 6(3): 990–1002. doi: 10.1109/TCCN.2020.2992604
    [9] LIU Yuanwei, LIU Xiao, MU Xidong, et al. Reconfigurable intelligent surfaces: Principles and opportunities[J]. IEEE Communications Surveys & Tutorials, 2021, 23(3): 1546–1577. doi: 10.1109/COMST.2021.3077737
    [10] 唐杰, 文红, 宋欢欢, 等. 基于智能反射表面辅助的MIMO无线通信密钥快速生成[J]. 电子与信息学报, 2022, 44(7): 2264–2272. doi: 10.11999/JEIT210442

    TANG Jie, WEN Hong, SONG Huanhuan, et al. MIMO fast wireless secret key generation based on intelligent reflecting surface[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2264–2272. doi: 10.11999/JEIT210442
    [11] 徐勇军, 徐然, 周继华, 等. 面向窃听用户的RIS-MISO系统鲁棒资源分配算法[J]. 电子与信息学报, 2022, 44(7): 2253–2263. doi: 10.11999/JEIT211537

    XU Yongjun, XU Ran, ZHOU Jihua, et al. Robust resource allocation algorithm for RIS-assisted MISO systems with eavesdroppers[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2253–2263. doi: 10.11999/JEIT211537
    [12] WU Qingqing and ZHANG Rui. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming[J]. IEEE Transactions on Wireless Communications, 2019, 18(11): 5394–5409. doi: 10.1109/TWC.2019.2936025
    [13] WU Qingqing and ZHANG Rui. Beamforming optimization for wireless network aided by intelligent reflecting surface with discrete phase shifts[J]. IEEE Transactions on Communications, 2020, 68(3): 1838–1851. doi: 10.1109/TCOMM.2019.2958916
    [14] YAN Shucheng, CAI Shu, XIA Wenchao, et al. A reconfigurable intelligent surface aided dual-function radar and communication system[C]. 2022 2nd IEEE International Symposium on Joint Communications & Sensing (JC&S), Seefeld, Austria, 2022: 1–6. doi: 10.1109/JCS54387.2022.9743509.
    [15] HE Yinghui, CAI Yunlong, MAO Hao, et al. RIS-assisted communication radar coexistence: Joint beamforming design and analysis[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(7): 2131–2145. doi: 10.1109/JSAC.2022.3155507
    [16] LIU Rang, LI Ming, LIU Yang, et al. Joint transmit waveform and passive beamforming design for RIS-aided DFRC systems[J]. IEEE Journal of Selected Topics in Signal Processing, 2022, 16(5): 995–1010. doi: 10.1109/JSTSP.2022.3172788
    [17] ZHU Qi, LI Ming, LIU Rang, et al. Joint transceiver beamforming and reflecting design for active RIS-aided ISAC systems[J]. IEEE Transactions on Vehicular Technology, 2023, 72(7): 9636–9640. doi: 10.1109/TVT.2023.3249752
    [18] SALEM A A, ISMAIL M H, and IBRAHIM A S. Active reconfigurable intelligent surface-assisted MISO integrated sensing and communication systems for secure operation[J]. IEEE Transactions on Vehicular Technology, 2023, 72(4): 4919–4931. doi: 10.1109/TVT.2022.3227319
    [19] CHEN Zhen, YE Junjie, and HUANG Lei. A two-stage beamforming design for active RIS aided dual functional radar and communication[C]. 2023 IEEE Wireless Communications and Networking Conference (WCNC), Glasgow, UK, 2023: 1–6. doi: 10.1109/WCNC55385.2023.10118701.
    [20] AUBRY A, DE MAIO A, and ROSAMILIA M. Reconfigurable intelligent surfaces for N-LOS radar surveillance[J]. IEEE Transactions on Vehicular Technology, 2021, 70(10): 10735–10749. doi: 10.1109/TVT.2021.3102315
    [21] LU Wei, DENG Bin, FANG Qiqing, et al. Intelligent reflecting surface-enhanced target detection in MIMO radar[J]. IEEE Sensors Letters, 2021, 5(2): 7000304. doi: 10.1109/LSENS.2021.3052753
    [22] LU Wei, LIN Qiang, SONG Ningzhe, et al. Target detection in intelligent reflecting surface aided distributed MIMO radar systems[J]. IEEE Sensors Letters, 2021, 5(3): 7000804. doi: 10.1109/LSENS.2021.3061534
    [23] BUZZI S, GROSSI E, LOPS M, et al. Radar target detection aided by reconfigurable intelligent surfaces[J]. IEEE Signal Processing Letters, 2021, 28: 1315–1319. doi: 10.1109/LSP.2021.3089085
    [24] BUZZI S, GROSSI E, LOPS M, et al. Foundations of MIMO radar detection aided by reconfigurable intelligent surfaces[J]. IEEE Transactions on Signal Processing, 2022, 70: 1749–1763. doi: 10.1109/TSP.2022.3157975
    [25] ZHANG Haobo, ZHANG Hongliang, DI Boya, et al. MetaRadar: Multi-target detection for reconfigurable intelligent surface aided radar systems[J]. IEEE Transactions on Wireless Communications, 2022, 21(9): 6994–7010. doi: 10.1109/TWC.2022.3153792
    [26] XIE Zhuang, XU Zhou, HAN Sudan, et al. Modulus constrained minimax radar code design against target interpulse fluctuation[J]. IEEE Transactions on Vehicular Technology, 2023, 72(10): 13671.
    [27] XIE Zhuang, XU Zhou, FAN Chongyi, et al. Robust radar waveform optimization under target interpulse fluctuation and practical constraints via sequential lagrange dual approximation[J]. IEEE Transactions on Aerospace and Electronic Systems, To be published.
    [28] TANG Bo, TUCK J, and STOICA P. Polyphase waveform design for MIMO radar space time adaptive processing[J]. IEEE Transactions on Signal Processing, 2020, 68: 2143–2154. doi: 10.1109/TSP.2020.2983833
    [29] YANG Jing, AUBRY A, DE MAIO A, et al. Multi-spectrally constrained transceiver design against signal-dependent interference[J]. IEEE Transactions on Signal Processing, 2022, 70: 1320–1332. doi: 10.1109/TSP.2022.3144953
    [30] BOYD S P and VANDENBERGHE L. Convex Optimization[M]. Cambridge, UK: Cambridge University Press, 2004.
    [31] AUBRY A, DEMAIO A, FARINA A, et al. Knowledge-aided (potentially cognitive) transmit signal and receive filter design in signal-dependent clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 93–117. doi: 10.1109/TAES.2013.6404093
    [32] YU Xianxiang, ALHUJAILI K, CUI Guolong, et al. MIMO radar waveform design in the presence of multiple targets and practical constraints[J]. IEEE Transactions on Signal Processing, 2020, 68: 1974–1989. doi: 10.1109/TSP.2020.2979602
    [33] WU Linlong, BABU P, and PALOMAR D P. Transmit waveform/receive filter design for MIMO radar with multiple waveform constraints[J]. IEEE Transactions on Signal Processing, 2018, 66(6): 1526–1540. doi: 10.1109/TSP.2017.2787115
    [34] SONG Junxiao, BABU P, and PALOMAR D P. Optimization methods for designing sequences with low autocorrelation sidelobes[J]. IEEE Transactions on Signal Processing, 2015, 63(15): 3998–4009. doi: 10.1109/TSP.2015.2425808
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  626
  • HTML全文浏览量:  250
  • PDF下载量:  132
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-27
  • 修回日期:  2023-10-17
  • 网络出版日期:  2023-10-19
  • 刊出日期:  2023-11-28

目录

    /

    返回文章
    返回