高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种能量选择防护结构与天线耦合效应矢量分析方法

虎宁 徐延林 刘培国

虎宁, 徐延林, 刘培国. 一种能量选择防护结构与天线耦合效应矢量分析方法[J]. 电子与信息学报, 2023, 45(11): 3945-3954. doi: 10.11999/JEIT230762
引用本文: 虎宁, 徐延林, 刘培国. 一种能量选择防护结构与天线耦合效应矢量分析方法[J]. 电子与信息学报, 2023, 45(11): 3945-3954. doi: 10.11999/JEIT230762
HU Ning, XU Yanlin, LIU Peiguo. A Vector Analysis Method for Coupling Effects Between Energy Selective Structures and Antennas[J]. Journal of Electronics & Information Technology, 2023, 45(11): 3945-3954. doi: 10.11999/JEIT230762
Citation: HU Ning, XU Yanlin, LIU Peiguo. A Vector Analysis Method for Coupling Effects Between Energy Selective Structures and Antennas[J]. Journal of Electronics & Information Technology, 2023, 45(11): 3945-3954. doi: 10.11999/JEIT230762

一种能量选择防护结构与天线耦合效应矢量分析方法

doi: 10.11999/JEIT230762
基金项目: 国家自然科学基金(62293491, 62101564),湖南省自然科学基金(2022JJ20045)
详细信息
    作者简介:

    虎宁:男,讲师,研究方向为电磁防护

    徐延林:男,副教授,研究方向为计算电磁学

    刘培国:男,教授,研究方向为电磁防护

    通讯作者:

    徐延林  13298656824@163.com

  • 中图分类号: TN82

A Vector Analysis Method for Coupling Effects Between Energy Selective Structures and Antennas

Funds: The National Natural Science Foundation of China (62293491, 62101564), The Natural Science Foundation of Hunan Province (2022JJ20045)
  • 摘要: 为了深入分析能量选择防护结构(ESS)等周期结构作为天线罩时与天线产生的耦合效应,提高分析效率,该文提出一种基于坡印廷矢量法的耦合效应分析方法。该文从收发互易的角度,将天线当作发射器而非常规方法中的接收器对天线的电磁特性进行分析。从接收的角度理解,天线是一种从自由空间中捕获能量的装置,而能量分布可以通过坡印廷能流密度曲线来描述。同样地,能量选择防护结构对电磁波的扰动也可以通过能流密度曲线来描述。因此,天线、防护结构以及二者的耦合效应均可通过能流密度曲线进行研究和分析。结果表明,该文所提方法与常规分析方法具有良好的一致性。相比于常规分析方法,该文方法可同时对天线与防护结构的耦合效应进行可视化分析与量化评估,指导防护结构的尺寸、形状设计以及最佳安装位置,显著提高设计效率。
  • 图  1  通过能流密度曲线定义的天线吸收口径

    图  2  对称振子不同位置的吸收口径形状

    图  3  对称振子吸收口径随距离变化规律

    图  4  对称振子吸收口径随距离变化规律

    图  5  ESS单元、阵列及传输特性

    图  6  ESS阵列的能流密度曲线分布

    图  7  ESS与天线耦合效应分析流程

    图  8  矩形喇叭天线的尺寸和几何形状

    图  9  矩形喇叭天线的能流密度特性分析

    图  10  Zd = 0.1λ 时天线的能流密度曲线分布

    图  11  矩形喇叭天线的电场分布

    图  12  矩形喇叭天线的磁场分布

    图  13  ESS放置于不同位置时矩形喇叭天线吸收口径的变化

    图  14  ESS放置于不同位置时对矩形喇叭天线方向图的影响

    图  15  ESS放置于不同位置时对矩形喇叭天线反射系数的影响

    图  16  矩形喇叭天线增益与吸收口径变化对比

  • [1] 刘培国, 刘晨曦, 谭剑锋, 等. 强电磁防护技术研究进展[J]. 中国舰船研究, 2015, 10(2): 2–6. doi: 10.3969/j.issn.1673-3185.2015.02.002

    LIU Peiguo, LIU Chenxi, TAN Jianfeng, et al. Analysis of the research development on HPM/EMP protection[J]. Chinese Journal of Ship Research, 2015, 10(2): 2–6. doi: 10.3969/j.issn.1673-3185.2015.02.002
    [2] 杨成. 能量选择表面仿真、测试与防护应用研究[D]. [博士论文], 国防科学技术大学, 2016.

    YANG Cheng. Simulation, mesurement and protection application of energy selective surface[D]. [Ph. D. dissertation], National University of Defense Technology, 2016.
    [3] 易波. 新型电磁结构在隐身和电磁防护中的应用研究[D]. [博士论文], 国防科学技术大学, 2017.

    YI Bo. Research on stealth and electromagnetic protection technology based on new-type electromagnetic structure[D]. [Ph. D. dissertation], National University of Defense Technology, 2017.
    [4] 刘晨曦. 能量选择表面设计与仿真[D]. [硕士论文], 国防科学技术大学, 2015.

    LIU Chenxi. Design and simulation of energy selective surface[D]. [Master dissertation], National University of Defense Technology, 2015.
    [5] 虎宁, 查淞, 刘晨曦, 等. 一种双频能量选择表面的设计[J]. 微波学报, 2022, 38(6): 1–5. doi: 10.14183/j.cnki.1005-6122.202206001

    HU Ning, ZHA Song, LIU Chenxi, et al. Design of a dual-band energy selective surface[J]. Journal of Microwaves, 2022, 38(6): 1–5. doi: 10.14183/j.cnki.1005-6122.202206001
    [6] HU Ning, ZHA Song, TIAN Tao, et al. Design and analysis of multiband energy selective surface based on semiconductors[J]. IEEE Transactions on Electromagnetic Compatibility, 2022, 64(4): 1076–1085. doi: 10.1109/TEMC.2022.3166156
    [7] HU Ning, ZHAO Yuting, ZHANG Jihong, et al. High performance energy selective surface based on equivalent circuit design approach[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(6): 4526–4538. doi: 10.1109/TAP.2021.3137293
    [8] 王轲. 能量选择结构设计与导航防护应用研究[D]. [硕士论文], 国防科技大学, 2017.

    WANG Ke. Research on energy selective structure design and navigation protection application[D]. [Master dissertation], National University of Defense Technology, 2017.
    [9] WAKATSUCHI H, LONG Jiang, and SIEVENPIPER D F. Waveform selective surfaces[J]. Advanced Functional Materials, 2019, 29(11): 1806386. doi: 10.1002/adfm.201806386
    [10] ZHOU Lin and SHEN Zhongxiang. 3-D absorptive energy-selective structures[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(9): 5664–5672. doi: 10.1109/TAP.2021.3061097
    [11] ZHOU Lin and SHEN Zhongxiang. Diffusive energy-selective surface with low backscattering[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(1): 430–439. doi: 10.1109/TAP.2021.3098603
    [12] LUO Zhangjie, WANG Qiang, ZHANG Xinge, et al. Intensity-dependent metasurface with digitally reconfigurable distribution of nonlinearity[J]. Advanced Optical Materials, 2019, 7(19): 1900792. doi: 10.1002/adom.201900792
    [13] CHEN Zhenzhen, CHEN Xing, and XU Guanghui. A spatial power limiter using a nonlinear frequency selective surface[J]. International Journal of RF and Microwave Computer Aided Engineering, 2018, 28(4): e21205. doi: 10.1002/mmce.21205
    [14] DENG Feng, XI XiuJuan, LI Jing, et al. A Method of designing a field-controlled active frequency selective surface[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 630–633. doi: 10.1109/lawp.2014.2375376
    [15] QIN Dongmei, MA Runbo, SU Jinrong, et al. Ultra-wideband strong field protection device based on metasurface[J]. IEEE Transactions on Electromagnetic Compatibility, 2020, 62(6): 2842–2848. doi: 10.1109/TEMC.2020.3020840
    [16] DIAO Junming and WARNICK K F, et al. Practical superdirectivity with resonant screened apertures motivated by a poynting streamlines analysis[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(1): 432–437. doi: 10.1109/tap.2017.2772929
    [17] DIAO Junming, LIU Lu, and WARNICK K F. Understanding the Element-gain paradox for receiving arrays using poynting streamlines[C]. 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Boston, USA, 2018: 1457–1458.
    [18] LIU Lu, DIAO Junming, and WARNICK K F. Array antenna gain enhancement with the poynting streamline method[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(1): 143–147. doi: 10.1109/LAWP.2019.2956219
    [19] IEEE. IEEE Std 145-2013 IEEE standard for definitions of terms for antennas[S]. IEEE, 2014: 1–50.
  • 加载中
图(16)
计量
  • 文章访问数:  186
  • HTML全文浏览量:  116
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-25
  • 修回日期:  2023-10-26
  • 网络出版日期:  2023-10-30
  • 刊出日期:  2023-11-28

目录

    /

    返回文章
    返回