高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

融合多源异构气象数据的光伏功率预测模型

谈玲 康瑞星 夏景明 王越

谈玲, 康瑞星, 夏景明, 王越. 融合多源异构气象数据的光伏功率预测模型[J]. 电子与信息学报, 2024, 46(2): 503-517. doi: 10.11999/JEIT230731
引用本文: 谈玲, 康瑞星, 夏景明, 王越. 融合多源异构气象数据的光伏功率预测模型[J]. 电子与信息学报, 2024, 46(2): 503-517. doi: 10.11999/JEIT230731
TAN Ling, KANG Ruixing, XIA Jingming, WANG Yue. A Photovoltaic Power Prediction Model Integrating Multi-source Heterogeneous Meteorological Data[J]. Journal of Electronics & Information Technology, 2024, 46(2): 503-517. doi: 10.11999/JEIT230731
Citation: TAN Ling, KANG Ruixing, XIA Jingming, WANG Yue. A Photovoltaic Power Prediction Model Integrating Multi-source Heterogeneous Meteorological Data[J]. Journal of Electronics & Information Technology, 2024, 46(2): 503-517. doi: 10.11999/JEIT230731

融合多源异构气象数据的光伏功率预测模型

doi: 10.11999/JEIT230731
详细信息
    作者简介:

    谈玲:女,教授,研究方向为气象大数据与信息处理、物联网应用

    康瑞星:男,硕士生,研究方向为光伏功率预测、图像处理

    夏景明:男,教授,研究方向为气象大数据处理、数据可视化、图像处理

    王越:男,硕士生,研究方向为风光场景生成

    通讯作者:

    夏景明 xiajingming@nuist.edu.cn

  • 中图分类号: TN911.7; TP183; TM615

A Photovoltaic Power Prediction Model Integrating Multi-source Heterogeneous Meteorological Data

  • 摘要: 高精度光伏功率预测对提高电力系统运行效率具有重要意义。光伏功率受多种因素影响,其中云层的变化是最主要的不确定因素。传统光伏功率预测方法没有充分考虑云的3维结构和气象要素对光伏功率的影响。因此,该文提出一种融合多源异构气象数据的多源变量光伏功率预测模型(MPPM)。MPPM的核心包括时空条件扩散模型(STCDM)、注意力堆叠LSTM网络(ASLSTM)和多维特征融合模块(MFFM)。STCDM模型通过对2维卫星云图进行精确预测,消除了云层边界处的模糊现象。ASLSTM模型则提取了3维天气研究与预报模式 (WRF)气象要素特征。MFFM模块将2维卫星云图特征和3维WRF气象要素特征进行融合,以得到未来1 h光伏功率预测结果。该文分别利用STCDM模型和MPPM模型开展卫星云图预测实验和光伏功率预测实验。实验结果显示,STCDM模型预测1 h内卫星云图的结构相似性指数(SSIM)达到0.914,MPPM模型预测1 h内光伏功率的相关系数(CORR)达到0.949,优于所有对比算法。
  • 图  1  MPPM总体架构

    图  2  STCDM模型

    图  3  云的3维分布对太阳辐射的影响

    图  4  ASLSTM结构图

    图  5  MFFM模块

    图  6  2022年4月1日10时至11时的FY-4B卫星云图预测实验结果

    图  7  2022年4月1日上午10时至11时光伏功率预测实验结果

    图  8  四季光伏功率预测RMSE值

    算法 1 STCDM训练过程
     repeat
      输入:真实卫星云图$ {\boldsymbol{y}}_t^0 $和时空特征${{\boldsymbol{h}}_t}$
       随机采样噪声向量${\boldsymbol{\epsilon}}{\text{~}}N(0,1)$
       随机采样加噪步数$n{\text{~}}{\rm{uniform}}\left( {\left\{ {1,2,\cdots,N} \right\} } \right)$
       根据式(2)进行扩散过程
       根据损失函数式(7)进行梯度下降步骤
      输出:损失值
     until损失函数收敛
    下载: 导出CSV
    算法 2 MPPM训练过程
     procedure1: STCDM预测卫星云图
     输入:卫星云图与ERA5气象数据${\boldsymbol{x}}$、光伏功率${\boldsymbol{P}}$、太阳方位角
     ${{\boldsymbol{S}}_1}$、太阳高度角${{\boldsymbol{S}}_2}$、WRF数值预报结果${\boldsymbol{M}}$
     for t=1 to T do
      执行STLSTM(${{\boldsymbol{x}}_t}$)获得 ${{\boldsymbol{h}}_t}$
      随机采样噪声图像${\boldsymbol{y}}_t^N{\text{~}}N(0,1)$
      for n=N to 1 do
       if n>1
        ${\boldsymbol{z}}{\text{~} }N(0,1)$
       else
        z=0
       根据式(3)进行去噪
        end for
       return 预测卫星云图${\boldsymbol{y}}_t^0$
      end for
      执行Conv(${\boldsymbol{y}}_{1:T}^0$)获得2维云特征${\boldsymbol{C}}$
      procedure2: ASLSTM提取3维气象特征
      for l = 1 to 7 do
       if l = 1
        执行STLSTM(${\boldsymbol{P}}$, ${{\boldsymbol{S}}_1}$, ${{\boldsymbol{S}}_2}$)获得${\boldsymbol{h}}_{\boldsymbol{A}}^l$
        执行Attention(${\boldsymbol{h}}_{\boldsymbol{A}}^l$, ${{\boldsymbol{M}}^l}$)获得3维气象要素特征$ {\boldsymbol{M}}_{\boldsymbol{A}}^l $
       else
         执行STLSTM($ {\boldsymbol{M}}_{\boldsymbol{A}}^l $)获得${\boldsymbol{h}}_{\boldsymbol{A}}^l$
         执行Attention(${\boldsymbol{h}}_{\boldsymbol{A}}^l$,$ {\boldsymbol{M}}_{}^l $)获得3维气象要素特征$ {\boldsymbol{M}}_{\boldsymbol{A}}^l $
     end for
     执行Concat($ {\boldsymbol{M}}_{\boldsymbol{A}}^1 $,$ {\boldsymbol{M}}_{\boldsymbol{A}}^l $)获得3维气象要素特征$ {\boldsymbol{M}}_{\boldsymbol{A}}^{} $
     procedure3: MFFM融合多维特征并预测光伏功率
     执行Channel Attention(${\boldsymbol{C}}$, $ {\boldsymbol{M}}_{\boldsymbol{A}}^{} $)获得$ \hat {\boldsymbol{M}} $
     执行Attention(Conv(${\boldsymbol{C}}$), $ \hat {\boldsymbol{M}} $)获得${\boldsymbol{F}}$
     执行STLSTM(${\boldsymbol{F}}$)获得PV Power
     输出:光伏功率预测值PV Power
    下载: 导出CSV

    表  1  不同模型的FY-4B卫星云图预测实验结果

    指标时间方法
    15 min30 min45 min60 min
    SSIMMSESSIMMSESSIMMSESSIMMSE
    STCDM0.91424.30.85333.10.83840.50.79542.6
    MotionRNN0.88228.20.83033.30.78947.70.68152.5
    E3D-LSTM0.87640.80.74745.70.67751.10.63454.6
    PredRNN0.81547.40.71851.50.60156.70.55867.3
    ConvLSTM0.77651.20.70856.10.58458.80.55765.4
    下载: 导出CSV

    表  2  不同模型的Himawari-8卫星云图预测实验结果

    指标时间方法
    15 min30 min45 min60 min
    SSIMMSESSIMMSESSIMMSESSIMMSE
    STCDM0.92224.60.88232.60.83840.80.80342.6
    MotionRNN0.87928.30.85633.40.78747.10.67954.3
    E3D-LSTM0.85940.80.80244.70.67152.70.64559.6
    PredRNN0.80247.40.74052.50.62159.80.58568.2
    ConvLSTM0.76951.20.71758.10.59657.90.56867.1
    下载: 导出CSV

    表  3  不同模型的光伏功率预测实验结果

    指标时间方法
    15 min30 min45 min60 min
    RMSECORRRMSECORRRMSECORRRMSECORR
    MPPM0.7010.9490.8510.9141.1320.8791.1560.871
    LSTM1.0390.8410.9930.8141.5460.8211.7640.753
    XGBoost1.0520.8711.3860.8181.5930.8251.5810.764
    ARIMA1.8670.7961.7010.7681.7480.7042.4530.682
    MLP1.2720.7851.8540.7462.3360.6972.3960.687
    ConvLSTM0.8020.9281.2640.8841.2110.8761.2570.814
    下载: 导出CSV

    表  4  不同季节光伏功率预测对比实验结果

    指标时间方法
    15 min30 min45 min60 min
    RMSECORRRMSECORRRMSECORRRMSECORR
    春季0.7990.9310.8390.8921.0890.8461.2060.827
    夏季0.9070.9021.2970.8561.4860.8091.9790.755
    秋季0.7410.9391.3860.9111.0130.8631.1850.835
    冬季0.8720.9121.3630.8691.6940.8272.1460.792
    下载: 导出CSV
  • [1] 陈晨, 袁绍军, 尹兆磊, 等. 一种分布式发电功率时间序列波动性量化评估方法[J]. 电子与信息学报, 2022, 44(11): 3825–3832. doi: 10.11999/JEIT220096.

    CHEN Chen, YUAN Shaojun, YIN Zhaolei, et al. A fluctuation quantitative evaluation method for distributed energy power time series[J]. Journal of Electronics &Information Technology, 2022, 44(11): 3825–3832. doi: 10.11999/JEIT220096.
    [2] 吴忠强, 曹碧莲, 侯林成, 等. 基于改进多元宇宙优化算法的光伏系统最大功率点跟踪[J]. 电子与信息学报, 2021, 43(12): 3735–3742. doi: 10.11999/JEIT200599.

    WU Zhongqiang, CAO Bilian, HOU Lincheng, et al. Maximum power point tracking for photovoltaic system based on improved multi-verse optimization[J]. Journal of Electronics &Information Technology, 2021, 43(12): 3735–3742. doi: 10.11999/JEIT200599.
    [3] ETXEGARAI G, LÓPEZ A, AGINAKO N, et al. An analysis of different deep learning neural networks for intra-hour solar irradiation forecasting to compute solar photovoltaic generators’ energy production[J]. Energy for Sustainable Development, 2022, 68: 1–17. doi: 10.1016/j.esd.2022.02.002.
    [4] GIGONI L, BETTI A, CRISOSTOMI E, et al. Day-Ahead hourly forecasting of power generation from photovoltaic plants[J]. IEEE Transactions on Sustainable Energy, 2018, 9(2): 831–842. doi: 10.1109/TSTE.2017.2762435.
    [5] MA Yanhong, LV Qingquan, ZHANG Ruixiao, et al. Short-term photovoltaic power forecasting method based on irradiance correction and error forecasting[J]. Energy Reports, 2021, 7: 5495–5509. doi: 10.1016/j.egyr.2021.08.167.
    [6] 张俊, 贺旭, 陆春良, 等. 基于数值天气预报的光伏功率短期预测分类组合算法[J]. 广东电力, 2019, 32(6): 55–60. doi: 10.3969/j.issn.1007-290X.2019.006.008.

    ZHANG Jun, HE Xu, LU Chunliang, et al. Classification and combination algorithm for photovotaic power short-term forecasting based on numerical weather prediction[J]. Guangdong Electric Power, 2019, 32(6): 55–60. doi: 10.3969/j.issn.1007-290X.2019.006.008.
    [7] YAO Tiechui, WANG Jue, WU Haoyan, et al. Intra-hour photovoltaic generation forecasting based on multi-source data and deep learning methods[J]. IEEE Transactions on Sustainable Energy, 2022, 13(1): 607–618. doi: 10.1109/TSTE.2021.3123337.
    [8] AGOUA X G, GIRARD R, and KARINIOTAKIS G. Photovoltaic power forecasting: Assessment of the impact of multiple sources of spatio-temporal data on forecast accuracy[J]. Energies, 2021, 14(5): 1432. doi: 10.3390/en14051432.
    [9] 师浩琪, 郭力, 刘一欣, 等. 基于多源气象预报总辐照度修正的光伏功率短期预测[J]. 电力自动化设备, 2022, 42(3): 104–112. doi: 10.16081/j.epae.202201019.

    SHI Haoqi, GUO Li, LIU Yixin, et al. Short-term forecasting of photovoltaic power based on total irradiance correction of multi-source meteorological forecast[J]. Electric Power Automation Equipment, 2022, 42(3): 104–112. doi: 10.16081/j.epae.202201019.
    [10] AHMED R, SREERAM V, MISHRA Y, et al. A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization[J]. Renewable and Sustainable Energy Reviews, 2020, 124: 109792. doi: 10.1016/j.rser.2020.109792.
    [11] WANG Fei, LU Xiaoxing, MEI Shengwei, et al. A satellite image data based ultra-short-term solar PV power forecasting method considering cloud information from neighboring plant[J]. Energy, 2022, 238: 121946. doi: 10.1016/j.energy.2021.121946.
    [12] SI Zhiyuan, YANG Ming, YU Yixiao, et al. Photovoltaic power forecast based on satellite images considering effects of solar position[J]. Applied Energy, 2021, 302: 117514. doi: 10.1016/j.apenergy.2021.117514.
    [13] 白捷予, 董存, 王铮, 等. 考虑云层遮挡的光伏发电功率超短期预测技术[J]. 高电压技术, 2023, 49(1): 159–168. doi: 10.13336/j.1003-6520.hve.20211769.

    BAI Jieyu, DONG Cun, WANG Zheng, et al. Ultra-short-term prediction of photovoltaic power generation considering cloud cover[J]. High Voltage Engineering, 2023, 49(1): 159–168. doi: 10.13336/j.1003-6520.hve.20211769.
    [14] WANG Yunbo, LONG Mingsheng, WANG Jianmin, et al. PredRNN: Recurrent neural networks for predictive learning using spatiotemporal LSTMs[C]. The 31st International Conference on Neural Information Processing Systems, Red Hook, USA, 2017.
    [15] WANG Yunbo, JIANG Lu, YANG M H, et al. Eidetic 3D LSTM: A model for video prediction and beyond[C]. 7th International Conference on Learning Representations, New Orleans, USA, 2019.
    [16] WU Haixu, YAO Zhiyu, WANG Jianmin, et al. MotionRNN: A flexible model for video prediction with spacetime-varying motions[C]. The 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 15430–15439.
    [17] SHI Xingjian, CHEN Zhourong, WANG Hao, et al. Convolutional LSTM network: A machine learning approach for precipitation nowcasting[C]. The 28th International Conference on Neural Information Processing Systems, Cambridge, USA, 2015.
    [18] WANG Fei, XUAN Zhiming, ZHEN Zhao, et al. A day-ahead PV power forecasting method based on LSTM-RNN model and time correlation modification under partial daily pattern prediction framework[J]. Energy Conversion and Management, 2020, 212: 112766. doi: 10.1016/j.enconman.2020.112766.
    [19] LI Xianglong, MA Longfei, CHEN Ping, et al. Probabilistic solar irradiance forecasting based on XGBoost[J]. Energy Reports, 2022, 8: 1087–1095. doi: 10.1016/j.egyr.2022.02.251.
    [20] SHARADGA H, HAJIMIRZA S, and BALOG R S. Time series forecasting of solar power generation for large-scale photovoltaic plants[J]. Renewable Energy, 2020, 150: 797–807. doi: 10.1016/j.renene.2019.12.131.
    [21] HUANG Chao, CAO Longpeng, PENG Nanxin, et al. Day-ahead forecasting of hourly photovoltaic power based on robust multilayer perception[J]. Sustainability, 2018, 10(12): 4863. doi: 10.3390/su10124863.
  • 加载中
图(8) / 表(6)
计量
  • 文章访问数:  989
  • HTML全文浏览量:  562
  • PDF下载量:  164
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-19
  • 修回日期:  2023-09-28
  • 网络出版日期:  2023-10-10
  • 刊出日期:  2024-02-29

目录

    /

    返回文章
    返回