高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大型带罩天线阵列的精确高效电磁仿真算法

殷磊 侯鹏 丁宁 林中朝 赵勋旺 张玉 焦永昌

殷磊, 侯鹏, 丁宁, 林中朝, 赵勋旺, 张玉, 焦永昌. 大型带罩天线阵列的精确高效电磁仿真算法[J]. 电子与信息学报, 2024, 46(6): 2549-2557. doi: 10.11999/JEIT230721
引用本文: 殷磊, 侯鹏, 丁宁, 林中朝, 赵勋旺, 张玉, 焦永昌. 大型带罩天线阵列的精确高效电磁仿真算法[J]. 电子与信息学报, 2024, 46(6): 2549-2557. doi: 10.11999/JEIT230721
YIN Lei, HOU Peng, DING Ning, LIN Zhongchao, ZHAO Xunwang, ZHANG Yu, JIAO Yongchang. Electromagnetic Algorithm for Efficiently Analyzing Large Scale Antenna Arrays with Radomes[J]. Journal of Electronics & Information Technology, 2024, 46(6): 2549-2557. doi: 10.11999/JEIT230721
Citation: YIN Lei, HOU Peng, DING Ning, LIN Zhongchao, ZHAO Xunwang, ZHANG Yu, JIAO Yongchang. Electromagnetic Algorithm for Efficiently Analyzing Large Scale Antenna Arrays with Radomes[J]. Journal of Electronics & Information Technology, 2024, 46(6): 2549-2557. doi: 10.11999/JEIT230721

大型带罩天线阵列的精确高效电磁仿真算法

doi: 10.11999/JEIT230721
基金项目: 陕西省重点研发计划项目(2022ZDLGY02-02, 2023-ZDLGY-09, 2021GXLH-02); 中央高校基本科研业务费专项资金(QTZX23018)
详细信息
    作者简介:

    殷磊:男,博士生,研究方向为计算电磁学、大规模并行多层快速多极子算法

    侯鹏:男,博士生,研究方向为计算电磁学、大规模并行多层快速多极子算法

    丁宁:男,博士生,研究方向为计算电磁学、大规模并行矩量法

    林中朝:男,副教授,研究方向为计算电磁学

    赵勋旺:男,教授,研究方向为计算电磁学

    张玉:男,教授,研究方向为计算电磁学、大规模并行算法

    焦永昌:男,教授,研究方向为天线优化设计

    通讯作者:

    林中朝 zclin@xidian.edu.cn

  • 中图分类号: TN820

Electromagnetic Algorithm for Efficiently Analyzing Large Scale Antenna Arrays with Radomes

Funds: Key Research and Development Program of Shaanxi (2022ZDLGY02-02, 2023-ZDLGY-09, 2021GXLH-02); The Fundamental Research Funds for the Central Universities (QTZX23018)
  • 摘要: 针对大型带罩天线阵列系统的辐射特性仿真问题,基于等效原理和波导模式匹配法,建立了多层快速多极子算法的波端口模型,实现了对天线激励源和匹配负载的精确电磁建模,同时提出了一种适用于计算金属介质天线模型的多层快速多极子算法并行策略,通过建立多棵八叉树结构降低了计算过程中各进程间的通信量,实现了对大型带罩天线阵列系统的精确、高效一体化仿真计算。通过与高阶矩量法及有限元-边界积分方程法计算得到的天线方向图、S参数进行对比,验证了该方法的精确性及高效性。
  • 图  1  波端口模型及等效模型示意图

    图  2  金属及金属介质模型的检验过程示意图

    图  3  MLFMA八叉树结构示意图及通信域划分示意图

    图  4  MOP算法多八叉树结构示意图及通信域划分示意图

    图  5  波导缝隙天线与天线罩模型

    图  6  波导缝隙天线S11对比

    图  7  波导缝隙天线加天线罩xoz面方向图对比

    图  8  带罩微带天线阵列模型

    图  9  微带天线阵列加天线罩前后2维方向图对比

    图  10  微带天线阵列加天线罩前后3维方向图对比

    图  11  微带天线阵列加天线罩前后近场分布对比

    表  1  波导缝隙天线加天线罩计算资源消耗对比表

    使用算法 未知量 核数 收敛残差/迭代步数 峰值内存(GB) 计算时间(s)
    MLFMA 2 209 604 48 0.001 / 53 312.79 1228.15
    HOMoM 507 197 576 – / – 3833.31 20768.08
    FE-BI 18 742 186 192 0.001 / 613 3363.30 11548.15
    下载: 导出CSV
  • [1] MONEUM M A A, SHEN Z, VOLAKIS J L, et al. Hybrid PO-MoM analysis of large axi-symmetric radomes[J]. IEEE Transactions on Antennas and Propagation, 2001, 49(12): 1657–1666. doi: 10.1109/8.982444.
    [2] AN Yuyuan and CHEN Ruishan. A fast hybrid method for EM analysis of electrically large metal space frame radomes[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 13: 1124–1127. doi: 10.1109/LAWP.2014.2327957.
    [3] WANG Binbin, HE Mang, LIU Jinbo, et al. Fast and efficient analysis of radome-enclosed antennas in receiving mode by an iterative-based hybrid integral equation/modified surface integration method[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(5): 2436–2445. doi: 10.1109/TAP.2017.2676718.
    [4] ZHAI Chang, ZHAO Xunwang, LIN Zhongchao, et al. Integrated analysis and optimization of the large airborne radome-enclosed antenna system[J]. ACES Journal, 2020, 35(10): 1192–1199. doi: 10.47037/2020.ACES.J.351012.
    [5] YOU Jianwei, TAN Shurun, ZHOU Xiaoyang, et al. A new method to analyze broadband antenna-radome interactions in time-domain[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(1): 334–344. doi: 10.1109/TAP.2013.2290548.
    [6] YANG Minglin, GAO Hongwei, and SHENG Xinqing. Parallel domain-decomposition-based algorithm of hybrid FE-BI-MLFMA method for 3-D scattering by large inhomogeneous objects[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(9): 4675–4684. doi: 10.1109/TAP.2013.2271232.
    [7] YANG Zeng, YUAN Xiaowei, HUANG Xiaowei, et al. Resistive sheet boundary condition-based nonconformal domain decomposition FE-BI-MLFMA for electromagnetic scattering from inhomogeneous objects with honeycomb structures[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(10): 9483–9496. doi: 10.1109/TAP.2022.3177565.
    [8] YANG Xiong, JIANG Ming, SHEN Liang, et al. A flexible FEM-BEM-DDM for EM scattering by multiscale anisotropic objects[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(12): 8562–8573. doi: 10.1109/TAP.2021.3091196.
    [9] HE Weijia, YANG Zeng, HUANG Xiaowei, et al. Solving electromagnetic scattering problems with tens of billions of unknowns using GPU accelerated massively parallel MLFMA[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(7): 5672–5682. doi: 10.1109/TAP.2022.3161520.
    [10] FOSTIER J and OLYSLAGER F. An asynchronous parallel MLFMA for scattering at multiple dielectric objects[J]. IEEE Transactions on Antennas and Propagation, 2008, 56(8): 2346–2355. doi: 10.1109/TAP.2008.926787.
    [11] HARRINGTON R F. Field Computation by Moment Methods[M]. Piscataway: IEEE Press, 1993: 52.
    [12] COIFMAN R, ROKHLIN V, and WANDZURA S. The fast multipole method for the wave equation: A pedestrian prescription[J]. IEEE Antennas and Propagation Magazine, 1993, 35(3): 7–12. doi: 10.1109/74.250128.
    [13] MAUTZ J R and HARRINGTON R F. Electromagnetic scattering from a homogeneous material body of revolution[J]. Archiv fuer Elektronik und Uebertragungstechnik, 1979, 33(2): 71–80.
    [14] RAO S, WILTON D, and GLISSON A. Electromagnetic scattering by surfaces of arbitrary shape[J]. IEEE Transactions on Antennas and Propagation, 1982, 30(3): 409–418. doi: 10.1109/TAP.1982.1142818.
    [15] YANG Minglin, DU Yulin, and SHENG Xinqing. Solving Electromagnetic Scattering Problems with Over 10 Billion Unknowns with the Parallel MLFMA[C]. Proceedings of 2019 Photonics & Electromagnetics Research Symposium, Xiamen, China, 2019: 355–360. doi: 10.1109/PIERS-Fall48861.2019.9021504.
    [16] HE Weijia, HUANG Xiaowei, YANG Minglin, et al. Massively parallel multilevel fast multipole algorithm for extremely large-scale electromagnetic simulations: A review[J]. Progress In Electromagnetics Research, 2022, 173: 37–52. doi: 10.2528/PIER22011202.
    [17] ZHAO Xunwang, TING S W, and ZHANG Yu. Parallelization of half-space MLFMA using adaptive direction partitioning strategy[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 13: 1203–1206. doi: 10.1109/LAWP.2014.2331699.
    [18] MUMPS[EB/OL].https://mumps-solver.org, 2023.
    [19] LIN Zhongchao, ZHAO Xunwang, ZHANG Yu, et al. Higher order method of moments analysis of metallic waveguides loaded with composite metallic and dielectric structures[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(9): 4958–4963. doi: 10.1109/TAP.2018.2845539.
    [20] ZUO Sheng, LIN Zhongchao, DOÑORO D G, et al. A massively parallel preconditioned FEM–BEM method for accurate analysis of complex electromagnetic field problems[J]. IEEE Antennas and Wireless Propagation Letters, 2023, 22(5): 1194–1198. doi: 10.1109/LAWP.2023.3236373.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  313
  • HTML全文浏览量:  211
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-18
  • 修回日期:  2023-10-11
  • 网络出版日期:  2023-10-17
  • 刊出日期:  2024-06-30

目录

    /

    返回文章
    返回