高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空地协同通信感知一体化系统的轨迹与资源分配联合优化

张广驰 顾泽霖 崔苗

张广驰, 顾泽霖, 崔苗. 空地协同通信感知一体化系统的轨迹与资源分配联合优化[J]. 电子与信息学报, 2024, 46(6): 2382-2390. doi: 10.11999/JEIT230716
引用本文: 张广驰, 顾泽霖, 崔苗. 空地协同通信感知一体化系统的轨迹与资源分配联合优化[J]. 电子与信息学报, 2024, 46(6): 2382-2390. doi: 10.11999/JEIT230716
ZHANG Guangchi, GU Zelin, CUI Miao. Joint Trajectory and Resource Allocation Optimization for Air-ground Collaborative Integrated Sensing and Communication Systems[J]. Journal of Electronics & Information Technology, 2024, 46(6): 2382-2390. doi: 10.11999/JEIT230716
Citation: ZHANG Guangchi, GU Zelin, CUI Miao. Joint Trajectory and Resource Allocation Optimization for Air-ground Collaborative Integrated Sensing and Communication Systems[J]. Journal of Electronics & Information Technology, 2024, 46(6): 2382-2390. doi: 10.11999/JEIT230716

空地协同通信感知一体化系统的轨迹与资源分配联合优化

doi: 10.11999/JEIT230716
基金项目: 广东省海洋经济发展项目(粤自然资合[2023]24号),广东省科技计划(2023A0505050127, 2022A0505050023, 2022A0505020008),广东省基础与应用基础研究基金(2023A1515011980)
详细信息
    作者简介:

    张广驰:男,教授,研究方向为新一代无线通信技术

    顾泽霖:男,硕士生,研究方向为无人机通信、通信感知一体化

    崔苗:女,讲师,研究方向为新一代无线通信技术

    通讯作者:

    崔 苗 cuimiao@gdut.edu.com

  • 11) 式(9)表明有效衰落功率仅与高度角有关,而与方向角无关,这是因为其中隐含了单天线全向等增益的假设。在未来的工作中,本文将进一步研究天线增益具有方向性的情况,此时方向角会影响有效衰落功率。
  • 中图分类号: TN925

Joint Trajectory and Resource Allocation Optimization for Air-ground Collaborative Integrated Sensing and Communication Systems

Funds: The Key Program of Marine Economy Development Special Foundation of Department of Natural Resources of Guangdong Province (GDNRC[2023]24), The Science and Technology Plan Project of Guangdong Province (2023A0505050127, 2022A0505050023, 2022A0505020008), Guangdong Basic and Applied Basic Research Foundation Project (2023A1515011980)
  • 摘要: 该文研究空地协同通信感知一体化系统,其中无人车(UGV)基站和无人机(UAV)中继集群组成空地协同网络,为用户提供通信服务,同时对目标区域进行探测感知。在更加准确的莱斯衰落信道模型下,研究联合优化无人机集群的通信感知关联、发射功率和飞行轨迹以及无人车基站的发射功率和行进轨迹,在目标区域感知频率和有效感知功率阈值的约束下,最大化用户最小平均通信速率。为了解决变量高度耦合且非凸的整数优化问题,首先利用块坐标下降法将原问题分解成4个子问题;接着引入松弛变量并将整数约束转化为惩罚项,然后证明莱斯信道下的有效感知功率是关于轨迹变量和松弛变量凸复合函数的联合凸函数;再利用连续凸优化法处理非凸项,并提出一种双层迭代算法高效求解次优解。仿真结果表明,与几种基准方案相比,所提优化算法在相同感知性能下,提高了用户最小平均通信速率,更好地实现了通信与感知性能之间的权衡,并具有良好的收敛性。
  • 图  1  空地协同通信感知一体化系统

    图  2  所提算法中目标函数和惩罚项与迭代次数的关系

    图  3  无人机集群通信感知关联

    图  4  无人车和无人机集群的水平轨迹和3维轨迹

    图  5  用户最小平均通信速率随有效感知功率阈值的变化

    图  6  用户最小平均通信速率随感知频率的变化

    1  双层迭代算法

     (1) 初始化迭代次数${l_1}$=0和${l_2}$=0,关联变量${{\boldsymbol{A}}^{{l_1},{l_2}}}$和${{\boldsymbol{B}}^{{l_1},{l_2}}}$,功率变量${{\boldsymbol{P}}^{{l_1}}}$,水平轨迹变量${{\boldsymbol{Q}}^{{l_1}}}$,垂直轨迹变量${{\boldsymbol{H}}^{{l_1}}}$,惩罚项系数
     ${\mu ^{{l_1},{l_2}}}$,目标函数${\eta ^{{l_1}}}$,收敛阈值${\varepsilon _1}$>0, ${\varepsilon _2}$>0,内层循环最大迭代次数${L_2}$
     (2) repeat
     (3)   令内层迭代次数${l_2}$=0,repeat
     (4)     给定{${{\boldsymbol{A}}^{{l_1},{l_2}}}$, ${{\boldsymbol{B}}^{{l_1},{l_2}}}$, ${{\boldsymbol{P}}^{{l_1}}}$, ${{\boldsymbol{Q}}^{{l_1}}}$, ${{\boldsymbol{H}}^{{l_1}}}$},通过式(29)和式(30)计算{${{{\bar {\boldsymbol A}}}^{{l_1},{l_2} + 1}}$, ${{{\bar {\boldsymbol B}}}^{{l_1},{l_2} + 1}}$}
     (5)     给定{${{{\bar {\boldsymbol A}}}^{{l_1},{l_2} + 1}}$, ${{{\bar {\boldsymbol B}}}^{{l_1},{l_2} + 1}}$, ${\mu ^{{l_1},{l_2}}}$},通过求解P4得到{${{\boldsymbol{A}}^{{l_1},{l_2} + 1}}$, ${{\boldsymbol{B}}^{{l_1},{l_2} + 1}}$, ${\rho ^{{l_1},{l_2} + 1}}$}
     (6)     更新惩罚项系数${\mu ^{{l_1},{l_2} + 1}}$, ${l_2} = {l_2} + 1$
     (7)   until${\rho ^{{l_1},{l_2}}} \le {\varepsilon _2}$ or ${l_2} \ge {L_2}$
     (8)   更新${{\boldsymbol{A}}^{{l_1} + 1}} = {{\boldsymbol{A}}^{{l_1},{l_2}}}$, ${{\boldsymbol{B}}^{{l_1} + 1}} = {{\boldsymbol{B}}^{{l_1},{l_2}}}$,计算$\eta _1^{{l_1} + 1}$
     (9)   给定{${{\boldsymbol{A}}^{{l_1} + 1}}$, ${{\boldsymbol{B}}^{{l_1} + 1}}$, ${{\boldsymbol{Q}}^{{l_1}}}$, ${{\boldsymbol{H}}^{{l_1}}}$},通过求解P5得到{${{\boldsymbol{P}}^{{l_1} + 1}}$, $\eta _2^{{l_1} + 1}$}
     (10)   给定{${{\boldsymbol{A}}^{{l_1} + 1}}$, ${{\boldsymbol{B}}^{{l_1} + 1}}$, ${{\boldsymbol{P}}^{{l_1} + 1}}$, ${{\boldsymbol{H}}^{{l_1}}}$},通过求解P6得到{${{\boldsymbol{Q}}^{{l_1} + 1}}$, $\eta _3^{{l_1} + 1,{\text{lb}}}$}
     (11)   给定{${{\boldsymbol{A}}^{{l_1} + 1}}$, ${{\boldsymbol{B}}^{{l_1} + 1}}$, ${{\boldsymbol{P}}^{{l_1} + 1}}$, ${{\boldsymbol{Q}}^{{l_1} + 1}}$},通过求解P7得到{${{\boldsymbol{H}}^{{l_1} + 1}}$, $ \eta _4^{{l_1} + 1,{\text{lb}}} $}
     (12)   更新${l_1} = {l_1} + 1$, ${{\boldsymbol{A}}^{{l_1},0}} = {{\boldsymbol{A}}^{{l_1} - 1}}$, ${{\boldsymbol{B}}^{{l_1},0}} = {{\boldsymbol{B}}^{{l_1} - 1}}$, ${\mu ^{{l_1},0}}$,计算${\eta ^{{l_1}}}$
     (13) until $ \dfrac{{{\eta ^{{l_1}}} - {\eta ^{{l_1} - 1}}}}{{{\eta ^{{l_1} - 1}}}} \lt {\varepsilon _1} $
    下载: 导出CSV
  • [1] LIU Fan, CUI Yuanhao, MASOUROS C, et al. Integrated sensing and communications: Toward dual-functional wireless networks for 6G and beyond[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1728–1767. doi: 10.1109/JSAC.2022.3156632.
    [2] CUI Yuanhao, LIU Fan, JING Xiaojun, et al. Integrating sensing and communications for ubiquitous IoT: Applications, trends, and challenges[J]. IEEE Network, 2021, 35(5): 158–167. doi: 10.1109/MNET.010.2100152.
    [3] SAAD W, BENNIS M, and CHEN Mingzhe. A vision of 6G wireless systems: Applications, trends, technologies, and open research problems[J]. IEEE Network, 2020, 34(3): 134–142. doi: 10.1109/MNET.001.1900287.
    [4] ZHANG J A, RAHMAN M L, WU Kai, et al. Enabling joint communication and radar sensing in mobile networks—a survey[J]. IEEE Communications Surveys & Tutorials, 2022, 24(1): 306–345. doi: 10.1109/COMST.2021.3122519.
    [5] LIU Tianyu, CUI Miao, ZHANG Guangchi, et al. 3D trajectory and transmit power optimization for UAV-enabled multi-link relaying systems[J]. IEEE Transactions on Green Communications and Networking, 2021, 5(1): 392–405. doi: 10.1109/TGCN.2020.3048135.
    [6] WANG Xinyi, FEI Zesong, ZHANG J A, et al. Constrained utility maximization in dual-functional radar-communication multi-UAV networks[J]. IEEE Transactions on Communications, 2021, 69(4): 2660–2672. doi: 10.1109/TCOMM.2020.3044616.
    [7] LYU Zhonghao, ZHU Guangxu, and XU Jie. Joint maneuver and beamforming design for UAV-enabled integrated sensing and communication[J]. IEEE Transactions on Wireless Communications, 2023, 22(4): 2424–2440. doi: 10.1109/TWC.2022.3211533.
    [8] MENG Kaitao, WU Qingqing, MA Shaodan, et al. UAV trajectory and beamforming optimization for integrated periodic sensing and communication[J]. IEEE Wireless Communications Letters, 2022, 11(6): 1211–1215. doi: 10.1109/LWC.2022.3161338.
    [9] WU Jun, YUAN Weijie, and BAI Lin. On the interplay between sensing and communications for UAV trajectory design[J]. IEEE Internet of Things Journal, 2023, 10(23): 20383–20395. doi: 10.1109/JIOT.2023.3287991.
    [10] DENG Cailian, FANG Xuming, and WANG Xianbin. Beamforming design and trajectory optimization for UAV-empowered adaptable integrated sensing and communication[J]. IEEE Transactions on Wireless Communications, 2023, 22(11): 8512–8526. doi: 10.1109/TWC.2023.3264523.
    [11] YOU Changsheng and ZHANG Rui. 3D trajectory optimization in rician fading for UAV-enabled data harvesting[J]. IEEE Transactions on Wireless Communications, 2019, 18(6): 3192–3207. doi: 10.1109/TWC.2019.2911939.
    [12] QIU Chen, WEI Zhiqing, FENG Zhiyong, et al. Joint resource allocation, placement and user association of multiple UAV-mounted base stations with in-band wireless backhaul[J]. IEEE Wireless Communications Letters, 2019, 8(6): 1575–1578. doi: 10.1109/LWC.2019.2928544.
    [13] WU Silei, XU Wenjun, WANG Fengyu, et al. Distributed federated deep reinforcement learning based trajectory optimization for air-ground cooperative emergency networks[J]. IEEE Transactions on Vehicular Technology, 2022, 71(8): 9107–9112. doi: 10.1109/TVT.2022.3175592.
    [14] ZHOU Yi, CHENG Nan, LU Ning, et al. Multi-UAV-aided networks: Aerial-ground cooperative vehicular networking architecture[J]. IEEE Vehicular Technology Magazine, 2015, 10(4): 36–44. doi: 10.1109/MVT.2015.2481560.
    [15] KANG Zhenyu, YOU Changsheng, and ZHANG Rui. 3D placement for multi-UAV relaying: An iterative Gibbs-sampling and block coordinate descent optimization approach[J]. IEEE Transactions on Communications, 2021, 69(3): 2047–2062. doi: 10.1109/TCOMM.2020.3043776.
    [16] ISKANDAR and SHIMAMOTO S. The channel characterization and performance evaluation of mobile communication employing stratospheric platform[C]. IEEE/ACES International Conference on Wireless Communications and Applied Computational Electromagnetics, Honolulu, USA, 2005: 828–831. doi: 10.1109/WCACEM.2005.1469712.
    [17] MENG Kaitao, WU Qingqing, MA Shaodan, et al. Throughput maximization for UAV-enabled integrated periodic sensing and communication[J]. IEEE Transactions on Wireless Communications, 2023, 22(1): 671–687. doi: 10.1109/TWC.2022.3197623.
    [18] BOYD S and VANDENBERGHE L. Convex Optimization[M]. Cambridge: Cambridge University Press, 2004. doi: 10.1017/CBO9780511804441.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  430
  • HTML全文浏览量:  442
  • PDF下载量:  120
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-18
  • 修回日期:  2024-01-31
  • 网络出版日期:  2024-02-16
  • 刊出日期:  2024-06-30

目录

    /

    返回文章
    返回