高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于不动点深度学习的IRS辅助毫米波移动通信系统全信道估计

褚宏云 潘雪 黄航 郑凌 杨梦瑶 肖戈

褚宏云, 潘雪, 黄航, 郑凌, 杨梦瑶, 肖戈. 基于不动点深度学习的IRS辅助毫米波移动通信系统全信道估计[J]. 电子与信息学报, 2024, 46(6): 2506-2514. doi: 10.11999/JEIT230692
引用本文: 褚宏云, 潘雪, 黄航, 郑凌, 杨梦瑶, 肖戈. 基于不动点深度学习的IRS辅助毫米波移动通信系统全信道估计[J]. 电子与信息学报, 2024, 46(6): 2506-2514. doi: 10.11999/JEIT230692
CHU Hongyun, PAN Xue, HUANG Hang, ZHENG Ling, YANG Mengyao, XIAO Ge. Full Channel Estimation for IRS-assisted Millimeter-wave Mobile Communication Systems Based on Fixed Point Deep Learning[J]. Journal of Electronics & Information Technology, 2024, 46(6): 2506-2514. doi: 10.11999/JEIT230692
Citation: CHU Hongyun, PAN Xue, HUANG Hang, ZHENG Ling, YANG Mengyao, XIAO Ge. Full Channel Estimation for IRS-assisted Millimeter-wave Mobile Communication Systems Based on Fixed Point Deep Learning[J]. Journal of Electronics & Information Technology, 2024, 46(6): 2506-2514. doi: 10.11999/JEIT230692

基于不动点深度学习的IRS辅助毫米波移动通信系统全信道估计

doi: 10.11999/JEIT230692
基金项目: 国家自然科学基金(62102314),173计划技术领域基金(2022-JCJQ-JJ-0730),陕西省自然科学基金(2022JQ-635)
详细信息
    作者简介:

    褚宏云:女,讲师,研究生导师,研究方向为智能超表面使能无线通信系统关键技术

    潘雪:女,硕士生,研究方向为智能超表面信道估计

    黄航:男,高级工程师,研究方向为电子对抗

    郑凌:男,讲师,研究生导师,研究方向为下一代网络体系架构、高性能网络与交换、人工智能算法及其FPGA实现

    杨梦瑶:女,硕士生,研究方向为通信感知一体化

    肖戈:男,硕士生,研究方向为智能超表面波束形成

    通讯作者:

    潘雪 px0321@stu.xupt.edu.cn

  • 中图分类号: TN929.5

Full Channel Estimation for IRS-assisted Millimeter-wave Mobile Communication Systems Based on Fixed Point Deep Learning

Funds: The National Natural Science Foundation of China (62102314), The 173 Program for Technology (2022-JCJQ-JJ-0730), The Natural Science Foundation of Shaanxi Province (2022JQ-635)
  • 摘要: 将智能反射面(IRS)与大规模MIMO结合能够保证和提高毫米波通信系统性能。针对基站(BS)-用户直连信道与用户-IRS-BS反射信道混叠场景,该文提出一种自适应的全信道估计方法。首先,引入辅助变量,采用原子范数将直连信道与反射信道的稀疏角度域子空间进行关联;然后,利用原子范数最小化将全信道估计问题建模为连续角度域稀疏矩阵重建规划;最后,基于不动点深度学习网络设计低复杂度的问题求解算法。该算法不仅能够克服传统基于模型解法中非线性估计算子对先验知识的依赖还可根据移动场景变化自适应调节算法复杂度。仿真结果表明,所提算法能够避免传统时分估计策略引起的差错传播效应,具有更高的估计精度和更低的复杂度。
  • 图  1  IRS辅助的多用户毫米波移动通信系统

    图  2  基于不动点深度学习的信道估计方法的两阶段网络结构

    图  3  不同信噪比的NMSE性能比较

    图  4  不同估计方法的NMSE

    图  5  提出的算法在NMSE上的收敛性

    图  6  SNR=0 dB时迭代的NMSE

    图  7  不同算法的NMSE

    1  基于AO的信道估计算法暨稀疏子空间关联过程

     输入:问题(P)
     输出:反射信道$ \widetilde {\boldsymbol{G}} $,直连信道$ {\boldsymbol{H}} $
     · 估计反射信道
     (1)根据步骤1估计$ {{\boldsymbol{b}}_k} $
     (2)根据步骤2估计$ {\boldsymbol{a}}(M,{\theta _{gr}}) $
     (3)根据式(16)得到反射信道$ \widetilde {\boldsymbol{G}} $
     · 估计直连信道
     (4)根据步骤1得到$ {\boldsymbol{T}}({\boldsymbol{\hat u}}) $,$ {\boldsymbol{\hat v}} $
     (5)对$ {\boldsymbol{T}}({\boldsymbol{\hat u}}) $进行范德蒙德分解得到$ {\boldsymbol{a}}(M,{\hat \theta _{k,{L_1}}}) $
     (6)根据式(14)得到直连信道$ {\boldsymbol{H}} $
    下载: 导出CSV

    2  FPN-Net不动点迭代算法

     输入:$ {{\boldsymbol{F}}_1},{{\boldsymbol{F}}_2},{\boldsymbol{Y}} $和NLE的权重$ \varTheta $,误差容限$ \varepsilon $
     初始化:$ {{\boldsymbol{Z}}^{(0)}} \leftarrow 0 $,$ i \leftarrow 0 $
     (1)$ {f_\varTheta }( \cdot ;{\boldsymbol{Y}}) $的固定点迭代
     (2)while $ {\Vert {{\boldsymbol{Z}}}^{(i)}-{f}_{\varTheta }({{\boldsymbol{Z}}}^{(i)};{\boldsymbol{Y}})\Vert }_{{\mathrm{F}}} \gt \varepsilon $do
     (3)$ {{\boldsymbol{Z}}^{(i + 1)}} \leftarrow {f_\varTheta }({{\boldsymbol{Z}}^{(i)}};{\boldsymbol{Y}}) $
     (4)$ i \leftarrow i + 1 $
     (5)$ {{\boldsymbol{Z}}^*} \leftarrow {{\boldsymbol{Z}}^i} $
     (6)end while
     (7)返回$ {{\boldsymbol{Z}}^*} $
    下载: 导出CSV

    表  1  基于深度学习的全信道估计算法的主要参数

    参数名称 数值
    最大周期数 150
    训练批量数 128
    验证批量数 2000
    学习率 1e–3
    训练集 80000
    验证集 5000
    测试集 5000
    下载: 导出CSV
  • [1] DI RENZO M, ZAPPONE A, DEBBAH M, et al. Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of research, and the road ahead[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(11): 2450–2525. doi: 10.1109/JSAC.2020.3007211.
    [2] SCHROEDER R, HE Jiguang, BRANTE G, et al. Two-stage channel estimation for hybrid RIS assisted MIMO systems[J]. IEEE Transactions on Communications, 2022, 70(7): 4793–4806. doi: 10.1109/TCOMM.2022.3176654.
    [3] MISHRA D and JOHANSSON H. Channel estimation and low-complexity beamforming design for passive intelligent surface assisted MISO wireless energy transfer[C]. 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 2019: 4659–4663. doi: 10.1109/ICASSP.2019.8683663.
    [4] MIRZA J and ALI B. Channel estimation method and phase shift design for reconfigurable intelligent surface assisted MIMO networks[J]. IEEE Transactions on Cognitive Communications and Networking, 2021, 7(2): 441–451. doi: 10.1109/TCCN.2021.3072895.
    [5] HU Jiangfeng, YIN Haifan, and BJÖRNSON E. MmWave MIMO communication with semi-passive RIS: A low-complexity channel estimation scheme[C]. 2021 IEEE Global Communications Conference (GLOBECOM), Madrid, Spain, 2021: 01–06. doi: 10.1109/GLOBECOM46510.2021.9685434.
    [6] JIN Yu, ZHANG Jiayi, ZHANG Xiaodan, et al. Channel estimation for semi-passive reconfigurable intelligent surfaces with enhanced deep residual networks[J]. IEEE Transactions on Vehicular Technology, 2021, 70(10): 11083–11088. doi: 10.1109/TVT.2021.3109937.
    [7] NING Boyu, CHEN Zhi, CHEN Wenrong, et al. Terahertz multi-user massive MIMO with intelligent reflecting surface: Beam training and hybrid beamforming[J]. IEEE Transactions on Vehicular Technology, 2021, 70(2): 1376–1393. doi: 10.1109/TVT.2021.3052074.
    [8] WEI Yi, ZHAO Mingmin, ZHAO Minjian, et al. Channel estimation for IRS-aided multiuser communications with reduced error propagation[J]. IEEE Transactions on Wireless Communications, 2022, 21(4): 2725–2741. doi: 10.1109/TWC.2021.3115161.
    [9] NOH S, SEO K, SUNG Y, et al. Joint direct and indirect channel estimation for RIS-assisted millimeter-wave systems based on array signal processing[J]. IEEE Transactions on Wireless Communications, 2023, 22(11): 8378–8391. doi: 10.1109/TWC.2023.3262492.
    [10] PENG Zhendong, ZHOU Gui, PAN Cunhua, et al. Channel estimation for RIS-aided multi-user mmWave systems with uniform planar arrays[J]. IEEE Transactions on Communications, 2022, 70(12): 8105–8122. doi: 10.1109/TCOMM.2022.3214892.
    [11] LIU Yushan, ZHANG Shun, GAO Feifei, et al. Cascaded channel estimation for RIS assisted mmWave MIMO transmissions[J]. IEEE Wireless Communications Letters, 2021, 10(9): 2065–2069. doi: 10.1109/LWC.2021.3092147.
    [12] ZHANG Xinyu, JIANG Weidong, HUO Kai, et al. Robust adaptive beamforming based on linearly modified atomic-norm minimization with target contaminated data[J]. IEEE Transactions on Signal Processing, 2020, 68: 5138–5151. doi: 10.1109/TSP.2020.3021257.
    [13] KUSANO T, YATABE K, and OIKAWA Y. Sparse time-frequency representation via atomic norm minimization[C]. 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, Canada, 2021: 5075–5079. doi: 10.1109/ICASSP39728.2021.9414921.
    [14] YANG Zai, XIE Lihua, and STOICA P. Vandermonde decomposition of multilevel toeplitz matrices with application to multidimensional super-resolution[J]. IEEE Transactions on Information Theory, 2016, 62(6): 3685–3701. doi: 10.1109/TIT.2016.2553041.
    [15] CHEN Peng, CHEN Zhimin, MIAO Pu, et al. RIS-ADMM: An ADMM-based passive and sparse sensing method with interference removal[J]. arXiv preprint arXiv: 2206.06172, 2022.
    [16] SONG Haobo, ZHANG Mianyi, GAO Jiabao, et al. Unsupervised learning-based joint active and passive beamforming design for reconfigurable intelligent surfaces aided wireless networks[J]. IEEE Communications Letters, 2021, 25(3): 892–896. doi: 10.1109/LCOMM.2020.3041510.
    [17] YU Wentao, SHEN Yifei, HE Hengtao, et al. An adaptive and robust deep learning framework for THz ultra-massive MIMO channel estimation[J]. IEEE Journal of Selected Topics in Signal Processing, 2023, 17(4): 761–776. doi: 10.1109/JSTSP.2023.3282832.
    [18] WANG Peilan, FANG Jun, DUAN Huiping, et al. Compressed channel estimation for intelligent reflecting surface-assisted millimeter wave systems[J]. IEEE Signal Processing Letters, 2020, 27: 905–909. doi: 10.1109/LSP.2020.2998357.
    [19] DE ARAÚJO G T and DE ALMEIDA A L F. PARAFAC-based channel estimation for intelligent reflective surface assisted MIMO system[C]. 2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM), Hangzhou, China, 2020: 1–5. doi: 10.1109/SAM48682.2020.9104260.
    [20] WANG Zhaorui, LIU Liang, and CUI Shuguang. Channel estimation for intelligent reflecting surface assisted multiuser communications: Framework, algorithms, and analysis[J]. IEEE Transactions on Wireless Communications, 2020, 19(10): 6607–6620. doi: 10.1109/TWC.2020.3004330.
    [21] XIE Wenwu, XIAO Jian, ZHU Peng, et al. Multi-task learning-based channel estimation for RIS assisted multi-user communication systems[J]. IEEE Communications Letters, 2022, 26(3): 577–581. doi: 10.1109/LCOMM.2021.3138082.
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  324
  • HTML全文浏览量:  151
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-12
  • 修回日期:  2023-12-27
  • 网络出版日期:  2024-02-21
  • 刊出日期:  2024-06-30

目录

    /

    返回文章
    返回