高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多普勒与微多普勒联合利用的弱小目标检测与估计方法

宋志勇 许云涛

宋志勇, 许云涛. 基于多普勒与微多普勒联合利用的弱小目标检测与估计方法[J]. 电子与信息学报, 2023, 45(11): 4083-4091. doi: 10.11999/JEIT230687
引用本文: 宋志勇, 许云涛. 基于多普勒与微多普勒联合利用的弱小目标检测与估计方法[J]. 电子与信息学报, 2023, 45(11): 4083-4091. doi: 10.11999/JEIT230687
SONG Zhiyong, XU Yuntao. Weak Targets Detection and Estimation Based on Joint Use of Doppler and Micro-Doppler[J]. Journal of Electronics & Information Technology, 2023, 45(11): 4083-4091. doi: 10.11999/JEIT230687
Citation: SONG Zhiyong, XU Yuntao. Weak Targets Detection and Estimation Based on Joint Use of Doppler and Micro-Doppler[J]. Journal of Electronics & Information Technology, 2023, 45(11): 4083-4091. doi: 10.11999/JEIT230687

基于多普勒与微多普勒联合利用的弱小目标检测与估计方法

doi: 10.11999/JEIT230687
基金项目: 国家自然科学基金(61401475)
详细信息
    作者简介:

    宋志勇:男,副教授,研究方向为雷达信号处理、雷达抗干扰、雷达目标识别

    许云涛:男,硕士生,研究方向为弱小目标检测与估计

    通讯作者:

    许云涛  xyt9812@nudt.edu.cn

  • 中图分类号: TN957.51

Weak Targets Detection and Estimation Based on Joint Use of Doppler and Micro-Doppler

Funds: The National Natural Science Foundation of China(61401475)
  • 摘要: 近年来,无人机(UAVs)等低慢小目标对现有低空空域管理带来了巨大挑战。这类目标由于其飞行高度低、飞行速度慢及雷达散射截面(RCS)面积小,导致其回波信噪比(SNR)低,传统基于目标多普勒信息的检测估计方法检测概率低,参数估计不准确。对于无人机类低慢小目标的检测估计,除了可以利用目标径向运动产生的多普勒信息外,还可以利用目标微动部件产生的微多普勒信息,通过有效聚集因微动而分散在多个多普勒单元格内的能量,可望实现目标信噪比的提升。该文针对旋翼类低慢小目标,充分挖掘目标回波中蕴含的多普勒信息和微多普勒信息,在随机集框架下对旋翼无人机目标的多普勒和微多普勒信息进行联合建模,提出一种基于(CBMeMBer)滤波器的多普勒和微多普勒联合检测估计方法,利用贝叶斯估计实现了目标多普勒信息和微多普勒信息的有效积累和融合利用,可以提高雷达低慢小目标的检测估计性能。仿真试验表明,该方法可实现对旋翼无人机目标的稳定检测与状态估计,相比于仅利用目标多普勒信息的传统检测方法,检测灵敏度提高了2 dB。
  • 图  1  实验场景

    图  2  雷达-旋转散射点关系示意图

    图  3  微多普勒谱与状态参数关系示意图

    图  4  仿真场景示意图

    图  5  第8帧与第16帧距离-多普勒图

    图  6  2dB信噪比下滤波器估计结果与真值

    图  7  两种算法的检测概率随信噪比变化曲线

    图  8  本文算法的平均OSPA误差随信噪比变化曲线

    图  9  不同桨叶数 $B$下检测概率随信噪比变化曲线

    图  10  不同旋转速度 $\omega $下检测概率随信噪比变化曲线

    图  11  不同的最大粒子数下检测概率随信噪比变化曲线

    算法1 无人机目标CBMeMBer滤波器
     输入:当前时刻测量 ${{\boldsymbol{Y}}_k} = {\{ {y_{1,k}}, \cdots ,{y_{m,k}}\} _{{N_r} \times {N_v}}}$、上一时刻滤波状态 $ r_{k - 1}^{(i)},\{ w_{k - 1}^{(i,j)},{\boldsymbol{x}}_{k - 1}^{(i,j)}\} _{j = 1}^{L_{k - 1}^{(i)}},\quad i \in [1,{M_{k - 1}}] $
     输出:本时刻滤波状态 $ r_k^{(i)},\{ w_k^{(i,j)},{\boldsymbol{x}}_k^{(i,j)}\} _{j = 1}^{L_k^{(i)}},\quad i \in [1,{M_k}] $
     (1) 根据建议分布采样新生粒子状态 ${\boldsymbol{x}}_{\varGamma ,k}^{(i,j)}{\text{~}}b_k^{(i)}( \cdot |{{\boldsymbol{Y}}_k}),j = 1,2, \cdots ,L_{\varGamma ,k}^{(i)}$
     (2) 计算新生粒子权重 $w_{\varGamma ,k}^{(i,j)} = \dfrac{{{p_{\varGamma ,k}}({\boldsymbol{x}}_{\varGamma ,k}^{(i,j)})}}{{b_k^{(i)}({\boldsymbol{x}}_{\varGamma ,k}^{(i,j)}|{{\boldsymbol{Y}}_k})}}$
     (3) 新生粒子权重归一化 $\tilde w_{\varGamma ,k}^{(i,j)} = \dfrac{{w_{\varGamma ,k}^{(i,j)}}}{{\displaystyle\sum\limits_{j = 1}^{L_{\varGamma ,k}^{(i)}} {w_{\varGamma ,k}^{(i,j)}} }}$
     (4) 根据建议分布采样预测粒子状态 ${\boldsymbol{x} }_{P,k|k - 1}^{(i,j)}{\text{~} }q_k^{(i)}( \cdot |{\boldsymbol{x} }_{k - 1}^{(i,j)},{ {\boldsymbol{Y} }_k}),j = 1,2, \cdots ,L_{k - 1}^{(i)}$
     一般设 $ q_k^{(i)}( \cdot |{\boldsymbol{x}}_{k - 1}^{(i,j)},{{\boldsymbol{Y}}_k}) = {f_{k|k - 1}}( \cdot |{\boldsymbol{x}}_{k - 1}^{(i,j)}) $, ${f_{k|k - 1}}( \cdot |{\boldsymbol{x}}_{k - 1}^{(i,j)})$由式(15)给出
     (5) 根据式(16)为 ${\boldsymbol{x}}_{P,k|k - 1}^{(i,j)}$添加噪声
     (6) 更新预测粒子权重 $w_{P,k|k - 1}^{(i,j)} = \dfrac{{w_{k - 1}^{(i,j)}{f_{k|k - 1}}({\boldsymbol{x}}_{P,k|k - 1}^{(i,j)}|{\boldsymbol{x}}_{k - 1}^{(i,j)}){p_{S,k}}({\boldsymbol{x}}_{k - 1}^{(i,j)})}}{{q_k^{(i)}({\boldsymbol{x}}_{P,k|k - 1}^{(i,j)}|{\boldsymbol{x}}_{k - 1}^{(i,j)},{{\boldsymbol{Y}}_k})}}$
     (7) 预测粒子权重归一化 $\tilde w_{P,k|k - 1}^{(i,j)} = \dfrac{{w_{P,k|k - 1}^{(i,j)}}}{{\displaystyle\sum\limits_{j = 1}^{L_{k - 1}^{(i)}} {w_{P,k|k - 1}^{(i,j)}} }}$
     (8) 根据上一时刻滤波状态计算本时刻单个伯努利项存在概率 $r_{P,k|k - 1}^{(i)} = r_{k - 1}^{(i)}\displaystyle\sum\limits_{j = 1}^{L_{k - 1}^{(i)}} {w_{k - 1}^{(i,j)}} {p_{S,k}}({\boldsymbol{x}}_{k - 1}^{(i,j)})$
     (9) 根据新生模型计算新生多伯努利密度存在概率 $r_{\varGamma ,k}^{(i)}$
     (10) 将新生粒子合并到预测粒子中 $\{ w_{k|k - 1}^{(i,j)},{\boldsymbol{x} }_{k|k - 1}^{(i,j)}\} _{j = 1}^{L_{k - 1}^{(i)} } = \{ w_{\varGamma ,k|k - 1}^{(i,j)},{\boldsymbol{x} }_{\varGamma ,k|k - 1}^{(i,j)}\} \cup \{ w_{P,k|k - 1}^{(i,j)},{\boldsymbol{x} }_{P,k|k - 1}^{(i,j)}\}$
     (11) 使用式(22)计算后验粒子权重 $\hat w_k^{(i,j)} = w_{k|k - 1}^{(i,j)}{g_{{y_k}}}({\boldsymbol{x}}_{k|k - 1}^{(i,j)})$
     (12) 计算粒子权重总和 $\varrho _k^{(i)} = \displaystyle\sum\limits_{j = 1}^{L_{k|k - 1}^{(i)}} {\hat w_k^{(i,j)}} $
     (13) 计算后验多伯努利密度存在概率 $r_k^{(i)} = \dfrac{{r_{k|k - 1}^{(i)}\varrho _k^{(i)}}}{{1 - r_{k|k - 1}^{(i)} + r_{k|k - 1}^{(i)}\varrho _k^{(i)}}}$
     (14) 后验粒子权重归一化 $w_k^{(i,j)} = \dfrac{{\hat w_k^{(i,j)}}}{{\varrho _k^{(i)}}}$
     (15) 后验粒子状态为上一时刻预测状态 ${\boldsymbol{x}}_k^{(i,j)} = {\boldsymbol{x}}_{k|k - 1}^{(i,j)}$
     (16) 根据粒子权重分布对 $\{ w_{k - 1}^{(i,j)},{\boldsymbol{x}}_{k - 1}^{(i,j)}\} _{j = 1}^{L_{k - 1}^{(i)}}$重采样,然后将权重设置为相同值并归一化
    下载: 导出CSV

    表  1  仿真雷达参数

    参数
    帧间隔 ε=1 s
    最大不模糊距离 200 m
    最大不模糊速度 20 m/s
    帧分辨率 Nr×Nv=256×512
    距离测量误差 $\zeta_r=3 \;{\rm{m}}$
    速度测量误差 $\zeta_v=5 \;{\rm{m/s}}$
    强度测量误差 $\zeta_{\rm{s}}=0.3 $
    雷达系统增益 ks=1×1019
    下载: 导出CSV

    表  2  仿真目标参数

    参数
    初始距离 r0=20 010 m
    运动速度 v=1 m/s
    旋转角速度 $\omega $=0.06π rad/s
    初始旋转相位 θ0=0
    桨叶个数 B=2
    测量强度 ρ=1
    下载: 导出CSV

    表  3  两种算法运行 100 次平均每帧使用时间

    算法 最大粒子数 时间(s)
    仅使用多普勒特征 1 500 0.068
    本文算法 700 0.066
    本文算法 1 000 0.101
    本文算法 1 500 0.143
    下载: 导出CSV
  • [1] CHEN V C. Analysis of radar micro-Doppler with time-frequency transform[C]. The Tenth IEEE Workshop on Statistical Signal and Array Processing (Cat. No. 00TH8496), Pocono Manor, USA, 2000: 463–466.
    [2] CHEN V C, LI F, HO S S, et al. Micro-Doppler effect in radar: Phenomenon, model, and simulation study[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(1): 2–21. doi: 10.1109/TAES.2006.1603402
    [3] CHEN V C. The Micro-Doppler Effect in Radar[M]. 2nd ed. Norwood: Artech House, 2019.
    [4] 秦晓雨, 邓彬, 董俊, 等. 太赫兹雷达直升机旋翼目标微动特性研究[J]. 太赫兹科学与电子信息学报, 2023, 21(3): 317–324. doi: 10.11805/TKYDA2022058

    QIN Xiaoyu, DENG Bin, DONG Jun, et al. Micro-motion characteristics of helicopter blades based on THz radar[J]. Journal of Terahertz Science and Electronic Information Technology, 2023, 21(3): 317–324. doi: 10.11805/TKYDA2022058
    [5] 冯维婷, 梁青. 闪烁现象下基于微动补偿的旋转叶片参数估计方法[J]. 信号处理, 2022, 38(12): 2617–2627. doi: 10.16798/j.issn.1003-0530.2022.12.016

    FENG Weiting and LIANG Qing. A method for parameters estimation of rotating blades based on micro-motion compensation under flashing[J]. Journal of Signal Processing, 2022, 38(12): 2617–2627. doi: 10.16798/j.issn.1003-0530.2022.12.016
    [6] 陈小龙, 陈唯实, 饶云华, 等. 飞鸟与无人机目标雷达探测与识别技术进展与展望[J]. 雷达学报, 2020, 9(5): 803–827. doi: 10.12000/JR20068

    CHEN Xiaolong, CHEN Weishi, RAO Yunhua, et al. Progress and prospects of radar target detection and recognition technology for flying birds and unmanned aerial vehicles[J]. Journal of Radars, 2020, 9(5): 803–827. doi: 10.12000/JR20068
    [7] CHEN Shiqian, DONG Xingjian, XING Guanpei, et al. Separation of overlapped non-stationary signals by ridge path regrouping and intrinsic chirp component decomposition[J]. IEEE Sensors Journal, 2017, 17(18): 5994–6005. doi: 10.1109/JSEN.2017.2737467
    [8] BRUNI V, TARTAGLIONE M, and VITULANO D. A pde-based analysis of the spectrogram image for instantaneous frequency estimation[J]. Mathematics, 2021, 9(3): 247. doi: 10.3390/math9030247
    [9] HU Yue, TU Xiaotong, LI Fucai, et al. Adaptive instantaneous frequency ridge extraction based on target tracking for frequency-modulated signals[J]. ISA Transactions, 2022, 128: 665–674. doi: 10.1016/j.isatra.2021.10.011
    [10] LI Yifan, YANG Yaocheng, FENG Ke, et al. Automated and adaptive ridge extraction for rotating machinery fault detection[J]. IEEE/ASME Transactions on Mechatronics, 2023: 1–11.
    [11] 赵彤璐, 廖桂生, 杨志伟. 基于短时迭代自适应-逆Radon变换的微多普勒提取方法[J]. 电子学报, 2016, 44(3): 505–513. doi: 10.3969/j.issn.0372-2112.2016.03.002

    ZHAO Tonglu, LIAO Guisheng, and YANG Zhiwei. Micro-Doppler extraction based on short-time iterative adaptive approach and inverse radon transform[J].Acta Electronica Sinica, 2016, 44(3): 505–513. doi: 10.3969/j.issn.0372-2112.2016.03.002
    [12] HOUGH P V C. Method and means for recognizing complex patterns[P]. USA Patent, 3069654A, 1962-12-18.
    [13] DING Yipeng, LIU Runjin, SHE Yanlong, et al. Micro-Doppler trajectory estimation of human movers by Viterbi–Hough joint algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5113111. doi: 10.1109/TGRS.2022.3171208
    [14] MAHLER R P S. Statistical Multisource-Multitarget Information Fusion[M]. Boston: Artech House, 2007.
    [15] VO B T. Random finite sets in multi-object filtering[D]. [Ph. D. dissertation], The University of Western Australia, 2008.
    [16] VO B T, SEE C M, MA N, et al. Multi-sensor joint detection and tracking with the Bernoulli filter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2): 1385–1402. doi: 10.1109/TAES.2012.6178069
    [17] VO B T, VO B N, and CANTONI A. The cardinality balanced multi-target multi-Bernoulli filter and its implementations[J]. IEEE Transactions on Signal Processing, 2009, 57(2): 409–423. doi: 10.1109/TSP.2008.2007924
    [18] VO B N, VO B T, and PHUNG D. Labeled random finite sets and the Bayes multi-target tracking filter[J]. IEEE Transactions on Signal Processing, 2014, 62(24): 6554–6567. doi: 10.1109/TSP.2014.2364014
    [19] VO B N, SINGH S, and DOUCET A. Sequential Monte Carlo methods for multitarget filtering with random finite sets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(4): 1224–1245. doi: 10.1109/TAES.2005.1561884
    [20] VO B N and MA W K. The Gaussian mixture probability hypothesis density filter[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4091–4104. doi: 10.1109/TSP.2006.881190
    [21] SHIM C, VO B T, VO B N, et al. Linear complexity Gibbs sampling for generalized labeled multi-Bernoulli filtering[J]. IEEE Transactions on Signal Processing, 2023, 71: 1981–1994. doi: 10.1109/TSP.2023.3277220
    [22] 蔡飞. 雷达弱小目标检测与跟踪技术研究[D]. [博士论文], 国防科学技术大学, 2015.

    CAI Fei. Research on detection and tracking technologies for dim targets in radar[D]. [Ph. D. dissertation], National University of Defense Technology, 2015.
    [23] VO B N, VO B T, PHAM N T, et al. Joint detection and estimation of multiple objects from image observations[J]. IEEE Transactions on Signal Processing, 2010, 58(10): 5129–5141. doi: 10.1109/TSP.2010.2050482
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  693
  • HTML全文浏览量:  392
  • PDF下载量:  172
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-12
  • 修回日期:  2023-10-09
  • 网络出版日期:  2023-10-14
  • 刊出日期:  2023-11-28

目录

    /

    返回文章
    返回