Network Selection Algorithm Based on Hilbert Space Vector Weighting
-
摘要: 为了提升海上异构无线网络中移动节点业务完成率和网络资源配置效率,针对现有网络选择算法与业务需求匹配性较差、动态环境下业务完成率不高的问题,该文提出一种基于Hilbert空间向量赋权的网络接入选择算法。该算法采用基于Hilbert空间的网络-业务匹配模型,将网络特征与业务需求映射至同一空间,在同一坐标系内衡量网络是否满足业务需求;同时,采用基于优劣解距离法的预切换网络选择算法,引入网络-业务匹配权重对优劣解距离法标准化矩阵进行修正,确保所选网络与业务需求相匹配,克服传统网络选择中业务需求考虑较少、网络特征与业务需求难以进行统一衡量的问题。此外,采用基于空间距离的网络切换控制算法,将匹配权重、空间距离引入网络切换控制,保证业务传输连续性,提高动态环境下的业务完成率。仿真结果表明,相较于对比算法,该算法的业务平均完成率提高6.81%以上,有效提升了网络的业务传输能力和通畅度,间接实现了网络资源的有效配置。Abstract: In order to improve the service completion rate of mobile nodes and the efficiency of network resource allocation in maritime heterogeneous wireless network, a network access selection algorithm based on Hilbert space vector assignment is proposed to address the problems of poor matching between existing network selection algorithms and service demands, and low service completion rate in dynamic environment. The algorithm adopts the network-service matching model based on Hilbert space, maps the network characteristics and service requirements to the same space, and measures whether the network meets the service requirements in the same coordinate system; at the same time, it adopts the pre-switching network selection algorithm based on the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method, and introduces the network-service matching weights to correct the normalization matrix of the distance-to-preferred-solution method, so as to ensure that the selected network matches the service requirements, and to ensure that the network matches the service requirements. This ensures that the selected network matches the service requirements and overcomes the problems of traditional network selection where the service requirements are less considered and the network characteristics and service requirements are difficult to be measured uniformly. In addition, the network switching control algorithm based on spatial distance is adopted, and matching weight and spatial distance are introduced into the network switching control to ensure the continuity of service transmission and improve the service completion rate in the dynamic environment. Simulation results show that compared with the comparison algorithm, the service completion rate of this algorithm is improved by at least 6.81%, which effectively improves the service transmission capacity and smoothness of the network, and indirectly realizes the effective allocation of network resources.
-
1 基于Hilbert空间向量赋权的网络选择算法
输入: 可用网络C;可用网络数据B;待处理业务S;时间Tt;
阈值D输出: 网络选择结果策略集合$\Pi _{m \in M}^C$ 1:$\forall {N_m} \in C$,$\forall {{\text{s}}_t} \in S$:$ U\left({s}_{i},{N}_{j}\right),{s}_{i}\in S,{N}_{j}\in C $ 2:for n = 1, 2, ···, Tt 3: 更新当前连接网络Nj , 4: for k = 1, 2, ···, m 5: 计算业务权重向量$ {w_{yw}} $,网络权重向量$w_{wl}^{}$,匹配权重
向量$ \Delta w $6: 改进的TOPSIS算法得到最大贴合度网络
${N_{r \in m}},{S_{\max }} = {S_r}$7: 计算切换度量值${d_{jr}}$ 8: if ${d_{jr}} < D$
保持原网络连接9: else
进行网络切换10: end 11: end 12:end 表 1 网络属性参数表
网络属性 包延时(ms) 网络速率(kbps) 丢包率(×$1{0^{ - 5}}$) 抖动(ms) 参数范围 20~250 10~1800 5~120 1~25 表 2 业务参数表
业务类别 交互类业务 会话类业务 流媒体类业务 包延时(ms) 50~270 30~100 200~1000 速率(kbps) 10~100 64~300 400~1000 丢包率(×$1{0^{ - 5}}$) 1~10 1~300 1~100 抖动(ms) 1~10 1~40 1~50 服务时间均值(s) 1 5 8 个数 300 100 50 表 3 业务传输和切换情况对比
网络选择
情况网络
匹配率(%)业务
完成率(%)业务
丢弃率(%)切换
次数50次业务
平均完成率(%)50次业务
平均丢弃率(%)50次平均
切换次数Dmin 35.00 56.29 4.55 ↓0 52.43 11.07 ↓0.60 SNRmax ↓27.90 57.43 3.28 1 54.18 8.84 5.74 TOPSIS 32.10 ↓52.14 ↑12.44 6 ↓51.12 ↑14.01 3.80 DAHP+S 49.10 58.43 8.96 8 69.35 4.70 8.04 本文算法 ↑87.30 ↑80.43 ↓0.00 ↑13 ↑76.16 ↓2.18 ↑11.00 -
[1] XU Yongjun, GUI Guan, GACANIN H, et al. A survey on resource allocation for 5g heterogeneous networks: Current research, future trends, and challenges[J]. IEEE Communications Surveys & Tutorials, 2021, 23(2): 668–695. doi: 10.1109/COMST.2021.3059896. [2] ZHU Anqi, MA Mingfang, GUO Songtao, et al. Adaptive access selection algorithm for multi-service in 5G heterogeneous internet of things[J]. IEEE Transactions on Network Science and Engineering, 2022, 9(3): 1630–1644. doi: 10.1109/TNSE.2022.3148399. [3] XU Yongjun, XIE Hao, WU Qingqing, et al. Robust max-min energy efficiency for RIS-aided HetNets with distortion noises[J]. IEEE Transactions on Communications, 2022, 70(2): 1457–1471. doi: 10.1109/TCOMM.2022.3141798. [4] YU Yiding, LIEW S C, and WANG Taotao. Multi-agent deep reinforcement learning multiple access for heterogeneous wireless networks with imperfect channels[J]. IEEE Transactions on Mobile Computing, 2022, 21(10): 3718–3730. doi: 10.1109/TMC.2021.3057826. [5] KARIMI-BIDHENDI S, GUO Jun, and JAFARKHANI H. Energy-efficient deployment in static and mobile heterogeneous multi-hop wireless sensor networks[J]. IEEE Transactions on Wireless Communications, 2022, 21(7): 4973–4988. doi: 10.1109/TWC.2021.3135385. [6] GUO Shiwei. An improved KNN based decision algorithm for vertical handover in heterogeneous wireless networks[C]. 2021 40th Chinese Control Conference (CCC), Shanghai, China, 2021: 3011–3016. doi: 10.23919/CCC52363.2021.9550412. [7] GOUTAM S, UNNIKRISHNAN S, and KUDU N. Decision for vertical handover using k-means clustering algorithm[C]. 2020 IEEE Bombay Section Signature Conference (IBSSC), Mumbai, India, 2020: 31–35. doi: 10.1109/IBSSC51096.2020.9332156. [8] WANG Dongli, SUN Qilu, WANG Yequn, et al. Network-assisted vertical handover scheme in heterogeneous aeronautical network[C]. 2020 Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC), Dalian, China, 2020: 148–152. doi: 10.1109/IPEC49694.2020.9115120. [9] XIE Jianli, GAO Wenjuan, and LI Cuiran. Heterogeneous network selection optimization algorithm based on a Markov decision model[J]. China Communications, 2020, 17(2): 40–53. doi: 10.23919/JCC.2020.02.004. [10] 赵亚军, 郁光辉, 徐汉青. 6G移动通信网络: 愿景、挑战与关键技术[J]. 中国科学:信息科学, 2019, 49(8): 963–987. doi: 10.1360/N112019-00033.ZHAO Yajun, YU Guanghui, and XU Hanqing. 6G mobile communication networks: Vision, challenges, and key technologies[J]. Scientia Sinica (Informationis), 2019, 49(8): 963–987. doi: 10.1360/N112019-00033. [11] 章广梅. 基于AI的无线网络感知技术研究综述[J]. 电讯技术, 2022, 62(5): 686–694. doi: 10.3969/j.issn.1001-893x.2022.05.020.ZHANG Guangmei. Researches on wireless network sensing technology based on AI: An overview[J]. Telecommunication Engineering, 2022, 62(5): 686–694. doi: 10.3969/j.issn.1001-893x.2022.05.020. [12] 俞鹤伟, 梁根. 异构无线网络接入选择算法综述[J]. 哈尔滨工业大学学报, 2017, 49(11): 178–188. doi: 10.11918/j.issn.0367-234.201605125.YU Hewei and LIANG Gen. A survey of access selection algorithms in heterogeneous wireless networks[J]. Journal of Harbin Institute of Technology, 2017, 49(11): 178–188. doi: 10.11918/j.issn.0367-6234.201605125. doi: 10.11918/j.issn.0367-234.201605125. [13] OZSAHIN D U, GÖKÇEKUŞ H, UZUN B, et al. Application of Multi-Criteria Decision Analysis in Environmental and Civil Engineering[M]. Cham: Springer, 2021: 268–285. doi: 10.1007/978-3-030-64765-0. [14] 孙雷, 田辉, 沈东明, 等. 基于Hilbert空间向量范数的网络选择算法[J]. 北京邮电大学学报, 2009, 32(4): 54–58. doi: 10.3969/j.issn.1007-5321.2009.04.012.SUN Lei, TIAN Hui, SHEN Dongming, et al. A network selection scheme based on hilbert space vector norms[J]. Journal of Beijing University of Posts and Telecommunications, 2009, 32(4): 54–58. doi: 10.3969/j.issn.1007-5321.2009.04.012. [15] LAHBY M, CHERKAOUI L, and ADIB A. An enhanced-TOPSIS based network selection technique for next generation wireless networks[C]. ICT 2013, Casablanca, Morocco, 2013: 1–5. doi: 10.1109/ICTEL.2013.6632067. [16] 陈香, 唐加山, 曹端喜. 基于效用函数的E-TOPSIS异构无线网络选择算法[J]. 现代计算机, 2020(32): 3–7. doi: 10.3969/j.issn.1007-1423.2020.32.001.CHEN Xiang, TANG Jiashan, and CAO Duanxi. E-TOPSIS heterogeneous wireless network selection algorithm based on utility functions[J]. Modern Computer, 2020(32): 3–7. doi: 10.3969/j.issn.1007-1423.2020.32.001. [17] 毛忠阳, 张治霖, 刘锡国, 等. 基于动态AHP的海上移动节点网络选择算法[J]. 系统工程与电子技术, 2022, 44(6): 2011–2018. doi: 10.12305/j.issn.1001-506X.2022.06.29.MAO Zhongyang, ZHANG Zhilin, LIU Xiguo, et al. Network selection algorithm for maritime mobile nodes based on dynamic AHP[J]. Systems Engineering and Electronics, 2022, 44(6): 2011–2018. doi: 10.12305/j.issn.1001-506X.2022.06.29. [18] 马彬, 李尚儒, 谢显中. 异构无线网络中基于人工神经网络的自适应垂直切换算法[J]. 电子与信息学报, 2019, 41(5): 1210–1216. doi: 10.11999/JEIT180534.MA Bin, LI Shangru, and XIE Xianzhong. An adaptive vertical handover algorithm based on artificial neural network in heterogeneous wireless networks[J]. Journal of Electronics & Information Technology, 2019, 41(5): 1210–1216. doi: 10.11999/JEIT180534. [19] 王睿. 基于智能优化算法的海事异构通信网络资源分配研究[D]. [硕士论文], 大连海事大学, 2019.WANG Rui. Research on resource allocation of marine heterogeneous communication network based on intelligent optimization algorithm[D]. [Master dissertation], Dalian Maritime University, 2019. [20] 孙雷. 异构无线环境中联合无线资源管理关键技术研究[D]. [博士论文], 北京邮电大学, 2011.SUN Lei. Research on key strategies of common radioresource management in heterogeneous radio environments [D]. [Ph. D. dissertation], Beijing University of Posts and Telecommunications, 2011. [21] 靳超, 李德敏, 佟乐, 等. 一种高斯-马尔科夫自组网组移动模型[J]. 通信技术, 2011, 44(2): 59–61,64. doi: 10.3969/j.issn.1002-0802.2011.02.021.JIN Chao, LI Demin, TONG Le, et al. Gauss-markov group mobility model for Ad Hoc networks[J]. Communications Technology, 2011, 44(2): 59–61,64. doi: 10.3969/j.issn.1002-0802.2011.02.021. [22] 马彬, 张文静, 谢显中. 面向终端个性化服务的模糊垂直切换算法[J]. 电子与信息学报, 2017, 39(6): 1284–1290. doi: 10.11999/JEIT16039.MA Bin, ZHANG Wenjing, and XIE Xianzhong. Individualization service oriented fuzzy vertical handover algorithm[J]. Journal of Electronics & Information Technology, 2017, 39(6): 1284–1290. doi: 10.11999/JEIT16039. [23] 方旭愿, 田红心, 孙德春, 等. 基于绿色能源感知的效用函数异构网络接入算法[J]. 计算机科学, 2019, 46(8): 127–132. doi: 10.11896/j.issn.1002-137X.2019.08.021.FANG Xuyuan, TIAN Hongxin, SUN Dechun, et al. Utility function heterogeneous network access algorithm based on green energy perception[J]. Computer Science, 2019, 46(8): 127–132. doi: 10.11896/j.issn.1002-137X.2019.08.021.