高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

结合深度强化学习的边缘计算网络服务功能链时延优化部署方法

孙春霞 杨丽 王小鹏 龙良

孙春霞, 杨丽, 王小鹏, 龙良. 结合深度强化学习的边缘计算网络服务功能链时延优化部署方法[J]. 电子与信息学报, 2024, 46(4): 1363-1372. doi: 10.11999/JEIT230632
引用本文: 孙春霞, 杨丽, 王小鹏, 龙良. 结合深度强化学习的边缘计算网络服务功能链时延优化部署方法[J]. 电子与信息学报, 2024, 46(4): 1363-1372. doi: 10.11999/JEIT230632
SUN Chunxia, YANG Li, WANG Xiaopeng, LONG Liang. Optimized Deployment Method of Edge Computing Network Service Function Chain Delay Combined with Deep Reinforcement Learning[J]. Journal of Electronics & Information Technology, 2024, 46(4): 1363-1372. doi: 10.11999/JEIT230632
Citation: SUN Chunxia, YANG Li, WANG Xiaopeng, LONG Liang. Optimized Deployment Method of Edge Computing Network Service Function Chain Delay Combined with Deep Reinforcement Learning[J]. Journal of Electronics & Information Technology, 2024, 46(4): 1363-1372. doi: 10.11999/JEIT230632

结合深度强化学习的边缘计算网络服务功能链时延优化部署方法

doi: 10.11999/JEIT230632
基金项目: 甘肃省高校产业支撑计划(2023CYZC-40),甘肃省优秀研究生“创新之星”项目(2023CXZX-546)
详细信息
    作者简介:

    孙春霞:女,副教授,研究方向为电路与系统

    杨丽:女,硕士生,研究方向为信号处理、网络功能虚拟化、强化学习和资源分配

    王小鹏:男,教授,研究方向为信息与通信工程、智能化信息处理等

    龙良:男,硕士生,研究方向为室内定位、人工智能

    通讯作者:

    杨丽 2980094475@qq.com

  • 中图分类号: TN929.5; TP393

Optimized Deployment Method of Edge Computing Network Service Function Chain Delay Combined with Deep Reinforcement Learning

Funds: Gansu Province Higher Education Industry Support Plan Project (2023CYZC-40), Gansu Province Excellent Graduate 'Innovation Star' Program (2023CXZX-546)
  • 摘要: 该文针对边缘网络资源受限且对业务流端到端时延容忍度低的问题,结合深度强化学习与基于时延的Dijkstra寻路算法提出一种面向时延优化的服务功能链(SFC)部署方法。首先,设计一种基于注意力机制的序列到序列(Seq2Seq)代理网络和基于时延的Dijkstra寻路算法,用于产生虚拟网络功能(VNF)的部署以及服务SFC的链路映射,同时考虑了时延优化模型的约束问题,采用拉格朗日松弛技术将其纳入强化学习目标函数中;其次,为了辅助网络代理快速收敛,采用基线评估器网络评估部署策略的预期奖励值;最后,在测试阶段,通过贪婪搜索及抽样技术降低网络收敛到局部最优的概率,从而改进模型的部署。对比实验表明,该方法在网络资源受限的情况下,比First-Fit算法与TabuSearch算法的时延分别降低了约10%和86.3%,且较这两种算法稳定约74.2%与84.4%。该方法能较稳定地提供更低时延的端到端服务,使时延敏感类业务获得更好体验。
  • 图  1  DDRL学习框架

    图  2  网络代理的训练过程

    图  3  小型网络场景中各算法生成策略的服务时延对比

    图  4  3种算法在大型网络场景下生成的放置策略的时延对比

    图  5  3种算法在不同网络场景下的运算时长

    图  6  DDRL与FF的时延优劣数量比较

    图  7  3种算法时延的算术平均值以及平均方差

    算法1 结合基于时延的Dijkstra与DRL算法的训练过程
     输入:网络服务请求${s_i}$和网络状态信息;惩罚权重${\alpha _{{\rm{occupancy}}}}$, ${\alpha _{{\rm{bandwidth}}}}$;环境时延的相关参数; epoch, batch;
     输出:SFC的部署策略${p^{{s_i}}}$,以及业务请求的端到端时延预估值
     DDRL训练过程:
     (1) 初始化参数$\theta $, ${\theta _v}$;$p \leftarrow \varnothing $, $\varOmega \leftarrow 0$, ${l_i} \leftarrow \varnothing $ , ${s_i} \leftarrow \varnothing $, $L\left( {p|s} \right) \leftarrow 0$和循环次数epoch
     (2) for epoch = 1, 2 ,···, do
     (3)   重置梯度${\mathrm{d}}\theta \leftarrow 0$
     (4)   生成batch个SFC实例$S$;根据式(11)计算的概率为VNF${f_i}$选择部署位置${v_i} \in {V^P}$
     (5)   由基于时延的Dijkstra寻路算法为各VNF${f_i}$找到时延最小的路径树${l_i}$
     (6)   ${s_j}$~对输入$S$进行采样,$j \in \left\{ {1,2,\cdots,B} \right\}$;${p_j}$对相应策略${\pi _\theta }$ 进行抽样,$j \in \left\{ {1,2,\cdots,B} \right\}$
     (7)   采样得到的${s_j}$通过基线估计器预估奖励${b_j} \leftarrow {b_{{\theta _v}}}\left( {{s_j}} \right)$,$j \in \left\{ {1,2,\cdots,B} \right\}$
     (8)   计算真实奖励$G\left( {{p_j}} \right)$、根据式(11)计算近似梯度${\nabla _\theta }J_G^\pi \left( \theta \right)$
     (9)   根据式(15)计算预测奖励值${b_j}$与真实奖励值$G\left( {{p_j}} \right)$均方误差${\nabla _{{\theta _v}}}J_G^\pi \left( {{\theta _v}} \right)$
     (10)   $\theta \leftarrow {\mathrm{Adam}}\left( {\theta ,{\nabla _\theta }J_G^\pi \left( \theta \right)} \right)$, ${\theta _v} \leftarrow {\mathrm{Adam}}\left( {{\theta _v},{\nabla _{{\theta _v}}}J_G^\pi \left( {{\theta _v}} \right)} \right)$
     (11) end for
     (12) return$\theta $,${\theta _v}$, $L\left( {p|{s_j}} \right)$, $\zeta \left( {p|{s_j}} \right)$
     (13) 训练结束
    下载: 导出CSV
    算法2 结合基于时延的Dijkstra与DRL算法的SFC部署方法
     输入:网络服务请求${s_i}$和网络状态信息;惩罚权重${\alpha _{{\rm{occupancy}}}}$, ${\alpha _{{\rm{bandwidth}}}}$;环境时延的相关参数
     输出:SFC的部署策略${p^{{s_i}}}$
     DDRL网络服务请求部署过程:
     (1) 初始化放置序列$p \leftarrow \varnothing $,时延奖励$L\left( {p|s} \right) \leftarrow \varnothing $,惩罚值$\zeta \left( {p|s} \right) \leftarrow \varnothing $,拉格朗日值$G\left( {p|s} \right) \leftarrow \varnothing $以及2个约束${\alpha _{{\mathrm{occupancy}}}} \leftarrow \varnothing $,
     ${\alpha _{{\rm{bandwidth}}}} \leftarrow \varnothing $
     (2) 遍历每个网络模型for m in range(models):
     (3)   加载模型m的参数$ \theta $,${\theta _v}$
     (4)   for batch in range(128):
     (5)     生成第batch条SFC的贪婪放置序列$p$, ${\text{l\_m}}[{\text{batch}}] \leftarrow G\left( {p|s} \right)$
     (6)     for sample in range(${\text{temp\_sample}}$):
     (7)       通过温度超参数$T$控制输出分布的稀疏性,生成稀疏的放置序列${\text{p\_temp}}$
     (8)       ${\text{l\_m\_temp[sample][batch]}} \leftarrow G({\text{p\_temp}}|s)$
     (9)     取$G({\text{p\_temp}}|s)$最小的放置序列作为第m个网络模型的温度抽样放置序列${\text{p\_m\_temp}}$
     (10)     生成贪婪放置${\text{p\_m}}$对应的拉格朗日值序列${\text{l\_m}}$, ${\text{l\_m\_temp}}$与惩罚值序列${\text{penalty\_m}}$, ${\text{penalty\_m\_temp}}$
     (11)    取两种搜索算法的最小惩罚值,对应的放置序列为最优放置决策$p$
     (12)    end for
     (13) return ${\mathrm{placement}}$, $L\left( {p|s} \right)$,$\zeta \left( {p|s} \right)$
     (14) 部署结束
    下载: 导出CSV

    表  1  VNF的主要参数

    VNF类型所需CPU资源量所需带宽处理数据所消耗时延(ms)
    141010
    2388
    3266
    4122
    下载: 导出CSV
  • [1] 陈卓, 冯钢, 刘怡静, 等. MEC中基于改进遗传模拟退火算法的虚拟网络功能部署策略[J]. 通信学报, 2020, 41(4): 70–80. doi: 10.11959/j.issn.1000-436x.2020074.

    CHEN Zhuo, FENG Gang, LIU Yijing, et al. Virtual network function deployment strategy based on improved genetic simulated annealing algorithm in MEC[J]. Journal on Communications, 2020, 41(4): 70–80. doi: 10.11959/j.issn.1000-436x.2020074.
    [2] ALLAHVIRDI A, YOUSEFI S, and SARDROUD A A. Placement of dynamic service function chains in partially VNF-enabled networks[J]. Telecommunication Systems, 2022, 81(2): 225–240. doi: 10.1007/s11235-022-00939-6.
    [3] YANG Song, LI Fan, YAHYAPOUR R, et al. Delay-sensitive and availability-aware virtual network function scheduling for NFV[J]. IEEE Transactions on Services Computing, 2022, 15(1): 188–201. doi: 10.1109/TSC.2019.2927339.
    [4] YAGHOUBPOUR F, BAKHSHI B, and SEIFI F. End-to-end delay guaranteed Service Function Chain deployment: A multi-level mapping approach[J]. Computer Communications, 2022, 194: 433–445. doi: 10.1016/j.comcom.2022.08.005.
    [5] 唐伦, 李师锐, 杜雨聪, 等. 基于多智能体柔性演员-评论家学习的服务功能链部署算法[J]. 电子与信息学报, 2022, 45(8): 2893–2901. doi: 10.11999/JEIT220803.

    TANG Lun, LI Shirui, DU Yucong, et al. Deployment algorithm of service function chain based on multi-agent soft actor-critic learning[J]. Journal of Electronics & Information Technology, 2022, 45(8): 2893–2901. doi: 10.11999/JEIT220803.
    [6] LIU Hongtai, DING Shengduo, WANG Shunyi, et al. Multi-objective optimization service function chain placement algorithm based on reinforcement learning[J]. Journal of Network and Systems Management, 2022, 30(4): 58. doi: 10.1007/s10922-022-09673-5.
    [7] 徐泽汐, 庄雷, 张坤丽, 等. 基于知识图谱的服务功能链在线部署算法[J]. 通信学报, 2022, 43(8): 41–51. doi: 10.11959/j.issn.1000-436x.2022154.

    XU Zexi, ZHUANG Lei, ZHANG Kunli, et al. Online placement algorithm of service function chain based on knowledge graph[J]. Journal on Communications, 2022, 43(8): 41–51. doi: 10.11959/j.issn.1000-436x.2022154.
    [8] HU Haiyan, KANG Qiaoyan, ZHAO Shuo, et al. Service function chain deployment method based on traffic prediction and adaptive virtual network function scaling[J]. Electronics, 2022, 11(16): 2625. doi: 10.3390/electronics11162625.
    [9] YALA L, FRANGOUDIS P A, and KSENTINI A. Latency and availability driven VNF placement in a MEC-NFV environment[C]. 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, 2018: 1–7. doi: 10.1109/GLOCOM.2018.8647858.
    [10] 石尚. 蜂窝移动网络下服务功能链的部署与动态配置研究[D]. [硕士论文], 北京邮电大学, 2021. doi: 10.26969/d.cnki.gbydu.2021.002972.

    SHI Shang. Research on deployment and dynamic configuration of service function chain in mobile cellular network[D]. [Master dissertation], Beijing University of Posts and Telecommunications, 2021. doi: 10.26969/d.cnki.gbydu.2021.002972.
    [11] NAM Y, SONG S, and CHUNG J M. Clustered NFV Service chaining optimization in mobile edge clouds[J]. IEEE Communications Letters, 2017, 21(2): 350–353. doi: 10.1109/LCOMM.2016.2618788.
    [12] ADDIS B, BELABED D, BOUET M, et al. Virtual network functions placement and routing optimization[C]. 2015 IEEE 4th International Conference on Cloud Networking (CloudNet), Niagara Falls, Canada, 2015: 171–177. doi: 10.1109/CloudNet.2015.7335301.
    [13] MIJUMBI R, SERRAT J, GORRICHO J L, et al. Design and evaluation of algorithms for mapping and scheduling of virtual network functions[C]. The 2015 1st IEEE Conference on Network Softwarization (NetSoft), London, UK, 2015: 1–9. doi: 10.1109/NETSOFT.2015.7116120.
    [14] TESSLER C, MANKOWITZ J D, and MANNOR S. Reward constrained policy optimization[C]. International Conference on Learning Representations, New Orleans, USA, 2019. doi: 10.48550/arXiv.1805.11074.
    [15] MIJUMBI R, SERRAT J, GORRICHO J, et al. Network function virtualization: State-of-the-art and research challenges[J]. IEEE Communications Surveys & Tutorials, 2016, 18(1): 236–262. doi: 10.1109/COMST.2015.2477041.
    [16] ZHANG Yuchao, XU Ke, WANG Haiyang, et al. Going fast and fair: Latency optimization for cloud-based service chains[J]. IEEE Network, 2018, 32(2): 138–143. doi: 10.1109/MNET.2017.1700275.
    [17] WILLIAMS R. J. Simple statistical gradient-following algorithms for connectionist reinforcement learning[J]. Machine Learning, 1992, 8(3/4): 229–256. doi: 10.1007/BF00992696.
    [18] SUTTON R S and BARTO A G. Reinforcement Learning: An Introduction[M]. Cambridge, USA: MIT Press, 1998: 229–235.
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  337
  • HTML全文浏览量:  304
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-26
  • 修回日期:  2023-11-06
  • 网络出版日期:  2023-11-13
  • 刊出日期:  2024-04-24

目录

    /

    返回文章
    返回