高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种低复杂度的正交时频空系统接收机设计

廖勇 李雪

廖勇, 李雪. 一种低复杂度的正交时频空系统接收机设计[J]. 电子与信息学报, 2024, 46(6): 2418-2424. doi: 10.11999/JEIT230625
引用本文: 廖勇, 李雪. 一种低复杂度的正交时频空系统接收机设计[J]. 电子与信息学报, 2024, 46(6): 2418-2424. doi: 10.11999/JEIT230625
LIAO Yong, LI Xue. Low Complexity Receiver Design for Orthogonal Time Frequency Space Systems[J]. Journal of Electronics & Information Technology, 2024, 46(6): 2418-2424. doi: 10.11999/JEIT230625
Citation: LIAO Yong, LI Xue. Low Complexity Receiver Design for Orthogonal Time Frequency Space Systems[J]. Journal of Electronics & Information Technology, 2024, 46(6): 2418-2424. doi: 10.11999/JEIT230625

一种低复杂度的正交时频空系统接收机设计

doi: 10.11999/JEIT230625
基金项目: 重庆市自然科学基金(CSTB2023NSCQ-MSX0025)
详细信息
    作者简介:

    廖勇:男,副研究员,研究方向为高速移动通信系统及其关键技术

    李雪:女,硕士生,研究方向为高速移动通信中的信道估计

    通讯作者:

    廖勇 liaoy@cqu.edu.cn

  • 中图分类号: TN929.5

Low Complexity Receiver Design for Orthogonal Time Frequency Space Systems

Funds: Chongqing Natural Science Foundation (CSTB2023NSCQ-MSX0025)
  • 摘要: 正交时频空(OTFS)调制可以将时间和频率选择性信道转换为时延-多普勒(DD)域的非选择性信道,这为高速移动场景建立可靠的无线通信提供了解决方案。然而,在车联网等复杂的多散射场景下,信道存在严重的多普勒间干扰(IDI),这给OTFS接收机信号的准确解调带来了极大的挑战。针对上述问题,该文提出一种联合稀疏贝叶斯学习(SBL)和阻尼最小二乘最小残差(d-LSMR)的OTFS接收机设计。首先,根据OTFS时域和DD域的关系,采用基扩展模型(BEM)将信道估计问题转换为基系数恢复问题,精准估计包括多普勒采样点在内的DD域信道。然后,提出一种高效的转换算法将基系数转换为信道等效矩阵。其次,将信道估计中估计得到的噪声,用于d-LSMR均衡器中进行信道均衡,并利用DD域信道矩阵的稀疏性实现快速收敛。系统仿真结果表明,与目前代表性的OTFS接收机相比,该文所提方案实现了更好的误码率性能,同时降低了计算复杂度。
  • 图  1  OTFS传输系统

    图  2  SBL算法的收敛过程

    图  3  d-LSMR算法的收敛过程

    图  4  调制方式为QPSK时接收机BER性能

    图  5  调制方式为16QAM时接收机BER性能

    算法1 基于SBL学习的基系数估计
     输入:$ {\boldsymbol{y}} $,${\boldsymbol{\varPhi } }$
     输出:$ {\boldsymbol{\tilde c}} $, $ \beta $
     (1) 初始化:${\bar {\boldsymbol{\alpha} } ^{(0)} } = {{\text{0}}}$, $\beta = 1$
     (2) while $||{\bar {\boldsymbol{\alpha} } ^{(i)} } - {\bar {\boldsymbol{\alpha} } ^{(i - 1)} }|| < {\varepsilon _{\boldsymbol{\alpha}} }$
     (3)  for $j = 1,2, \cdots ,{{QL} }$
     (4)   超参数更新:${\bar \alpha ^{\left( i \right)} }\left( j \right) = \varSigma _{jj}^{(i - 1)} + {\left( { {\boldsymbol{\mu} } _{\boldsymbol{c}}^{\left( {i - 1} \right)}\left( j \right)} \right)^2}$
     (5)  end
     (6)  噪声更新:${\beta ^{(i)} } = \frac{ {||{\boldsymbol{y} } - {\boldsymbol{\varPhi \mu } }_c^{(i)}||_2^2} }{ { {N_{\boldsymbol{p}}} - {\boldsymbol{\varSigma } }_{\boldsymbol{c}}^{(i)}(j)(1 - {\alpha ^{(i)} }(j)\varSigma _{jj}^{(i)})} }$
     (7)  后验更新:通过式(7)和式(8),更新后验参数${\boldsymbol{\varSigma}} _{\boldsymbol{c}}^{\left( i \right)}$和${\boldsymbol{\mu}} _{\boldsymbol{c}}^{\left( i \right)}$
     (8)  $i = i + 1$
     (9) end
    下载: 导出CSV
    算法2 基于d-LSMR的基系数均衡
     输入:$ {\boldsymbol{y}} $,$ {\boldsymbol{\tilde c}} $, ${\sigma ^2}$
     输出:$ {\boldsymbol{\tilde x}} $
     (1) for $q = 1,2, \cdots ,Q$
     (2)   ${\boldsymbol{H = H} }{ + }\left( { {\text{circ} }\left( {\left( { {{\boldsymbol{\varXi}} _q} \odot {c_q}\left( 0 \right)} \right), \cdots \left( { {{\boldsymbol{\varXi}} _q} \odot {c_q}\left( {L - 1} \right)} \right)} \right)} \right)$
     (3) end
     (4) 初始化:$ {{\eta }_1}{{\boldsymbol{\nu }}_1} = {\boldsymbol{y}} $, $ {{\xi }_1}{{\boldsymbol{\omega }}_1} = {{\boldsymbol{H}}^{\text{H}}}{{\boldsymbol{\nu }}_1} $, $i = 0$ (d-LSMR均衡)
     (5) while $i < M$ or ${\varepsilon _i}$收敛
     (6)   $ {{\eta }_{i + 1}}{{\boldsymbol{\nu }}_{i + 1}} = {\boldsymbol{H}}{{\boldsymbol{\omega }}_i} - {{\xi }_i}{{\boldsymbol{\nu }}_i} $
     (7)   $ {{\xi }_{i + 1}}{{\boldsymbol{\omega }}_{i + 1}} = {{\boldsymbol{H}}^{\text{H}}}{{\boldsymbol{\nu }}_{i + 1}} - {{\eta }_{i + 1}}{{\boldsymbol{\omega }}_i} $
     (8)   根据式(22)QR分解得到$ {{\boldsymbol{\bar R}}_{m + 1}} $
     (9)   求解(21)得到${{\boldsymbol{z}}_i}$,并计算残量
     (10)   $i = i + 1$
     (11) end
     (12) $\tilde{{\boldsymbol{x}}}={\boldsymbol{\mathcal{W}}}{\text{} }_{i-1}{{\boldsymbol{z}}}_{i-1}$
    下载: 导出CSV

    表  1  信道估计/均衡算法复杂度对比

    算法时间复杂度
    信道估计BEM-LS $ O\left( {{M^2}{N^2}\left( {QL} \right)} \right) $
    BEM-LMMSE $ O\left( {{M^2}{N^2}\left( {QL} \right)} \right) $
    BEM-SBL $ O\left( {{I_S}{M^2}{N^2}\left( {QL} \right)} \right) $
    信道均衡ZF $ O\left( {{M^3}{N^3}} \right) $
    LMMSE $ O\left( {{M^3}{N^3}} \right) $
    d-LMSR $ O\left( {2{M^2}{N^2} + I_K^3} \right) $
    下载: 导出CSV

    表  2  仿真系统参数

    参数名称参数值
    子载波个数($M$)32
    符号个数($N$)16
    载波频率5.9 GHz
    调制方式QPSK/16QAM
    用户移动速度121.5~607.5 km/h
    子载波间隔15 kHz
    信道模型EVA[20]
    CP长度7
    下载: 导出CSV
  • [1] YUAN Weijie, LI Shuangyang, WEI Zhiqiang, et al. New delay Doppler communication paradigm in 6G era: A survey of orthogonal time frequency space (OTFS)[J]. China Communications, 2023, 20(6): 1–25. doi: 10.23919/JCC.fa.2022-0578.202306.
    [2] 邢旺, 唐晓刚, 周一青, 等. 面向OTFS的时延-多普勒域信道估计方法综述[J]. 通信学报, 2022, 43(12): 188–201. doi: 10.11959/j.issn.1000-436x.2022224.

    XING Wang, TANG Xiaogang, ZHOU Yiqing, et al. Survey of channel estimation method in delay-Doppler domain for OTFS[J]. Journal on Communications, 2022, 43(12): 188–201. doi: 10.11959/j.issn.1000-436x.2022224.
    [3] WEI Zhiqiang, YUAN Weijie, LI Shuangyang, et al. Orthogonal time-frequency space modulation: A promising next-generation waveform[J]. IEEE Wireless Communications, 2021, 28(4): 136–144. doi: 10.1109/MWC.001.2000408.
    [4] LIAO Yong and LI Xue. Joint multi-domain channel estimation based on sparse Bayesian learning for OTFS system[J]. China Communications, 2023, 20(1): 14–23. doi: 10.23919/JCC.2023.01.002.
    [5] WU Yiyan and ZOU W Y. Orthogonal frequency division multiplexing: A multi-carrier modulation scheme[J]. IEEE Transactions on Consumer Electronics, 1995, 41(3): 392–399. doi: 10.1109/30.468055.
    [6] 蒋占军, 刘庆达, 张鈜, 等. 高速移动通信系统中OTFS分数多普勒信道估计加窗研究[J]. 电子与信息学报, 2022, 44(2): 646–653. doi: 10.11999/JEIT210561.

    JIANG Zhanjun, LIU Qingda, ZHANG Hong, et al. Study on OTFS fractional Doppler channel estimation and windowing in high-speed mobile communication systems[J]. Journal of Electronics &Information Technology, 2022, 44(2): 646–653. doi: 10.11999/JEIT210561.
    [7] WEI Zhiqiang, YUAN Weijie, LI Shuangyang, et al. Transmitter and receiver window designs for orthogonal time-frequency space modulation[J]. IEEE Transactions on Communications, 2021, 69(4): 2207–2223. doi: 10.1109/TCOMM.2021.3051386.
    [8] WEI Zhiqiang, YUAN Weijie, LI Shuangyang, et al. Performance analysis and window design for channel estimation of OTFS modulation[C]. 2021 IEEE International Conference on Communications, Montreal, Canada, IEEE, 2021: 1–7.
    [9] RAMACHANDRAN M K and CHOCKALINGAM A. MIMO-OTFS in high-Doppler fading channels: Signal detection and channel estimation[C]. 2018 IEEE Global Communications Conference, Abu Dhabi, United Arab Emirates, IEEE, 2018: 206–212.
    [10] RAVITEJA P, PHAN K T, and HONG Yi. Embedded pilot-aided channel estimation for OTFS in delay–Doppler channels[J]. IEEE Transactions on Vehicular Technology, 2019, 68(5): 4906–4917. doi: 10.1109/TVT.2019.2906357.
    [11] QU Huiyang, LIU Guanghui, ZHANG Lei, et al. Low-dimensional subspace estimation of continuous-Doppler-spread channel in OTFS systems[J]. IEEE Transactions on Communications, 2021, 69(7): 4717–4731. doi: 10.1109/TCOMM.2021.3072744.
    [12] SURABHI G D and CHOCKALINGAM A. Low-complexity linear equalization for OTFS modulation[J]. IEEE Communications Letters, 2020, 24(2): 330–334. doi: 10.1109/LCOMM.2019.2956709.
    [13] THAJ T and VITERBO E. Low complexity iterative rake decision feedback equalizer for zero-padded OTFS systems[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 15606–15622. doi: 10.1109/TVT.2020.3044276.
    [14] ZEMEN T, BERNADO L, CZINK N, et al. Iterative time-variant channel estimation for 802.11p using generalized discrete prolate spheroidal sequences[J]. IEEE Transactions on Vehicular Technology, 2012, 61(3): 1222–1233. doi: 10.1109/TVT.2012.2185526.
    [15] 游康勇, 杨立山, 刘玥良, 等. 基于稀疏贝叶斯学习的网格自适应多源定位[J]. 电子与信息学报, 2018, 40(9): 2150–2157. doi: 10.11999/JEIT171238.

    YOU Kangyong, YANG Lishan, LIU Yueliang, et al. Adaptive grid multiple sources localization based on sparse Bayesian learning[J]. Journal of Electronics &Information Technology, 2018, 40(9): 2150–2157. doi: 10.11999/JEIT171238.
    [16] FONG D C L and SAUNDERS M. LSMR: An iterative algorithm for sparse least-squares problems[J]. SIAM Journal on Scientific Computing, 2011, 33(5): 2950–2971. doi: 10.1137/10079687X.
    [17] HONG Linyi and ZHANG Naimin. On the preconditioned MINRES method for solving singular linear systems[J]. Computational and Applied Mathematics, 2022, 41(7): 304. doi: 10.1007/s40314-022-02007-w.
    [18] DANAEI K, MORADZADEH A, NOROUZI G H, et al. 3D inversion of gravity data with unstructured mesh and least-squares QR-factorization (LSQR)[J]. Journal of Applied Geophysics, 2022, 206: 104781. doi: 10.1016/j.jappgeo.2022.104781.
    [19] GOLUB G and KAHAN W. Calculating the singular values and pseudo-inverse of a matrix[J]. Journal of the Society for Industrial and Applied Mathematics Series B Numerical Analysis, 1965, 2(2): 205–224. doi: 10.1137/0702016.
    [20] 3GPP TS 36.101 (V17.0. 0) Technical specification group radio access network; Evolved universal terrestrial radio access (E-UTRA); User equipment (UE) radio transmission and reception[S]. 2020.
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  583
  • HTML全文浏览量:  161
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-25
  • 修回日期:  2023-09-12
  • 网络出版日期:  2023-09-15
  • 刊出日期:  2024-06-30

目录

    /

    返回文章
    返回