高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于磁性传感器的低失调温度补偿接口电路设计

樊华 常伟鹏 王策 李国 刘建明 李宗霖 魏琦 冯全源

樊华, 常伟鹏, 王策, 李国, 刘建明, 李宗霖, 魏琦, 冯全源. 基于磁性传感器的低失调温度补偿接口电路设计[J]. 电子与信息学报, 2024, 46(4): 1521-1528. doi: 10.11999/JEIT230601
引用本文: 樊华, 常伟鹏, 王策, 李国, 刘建明, 李宗霖, 魏琦, 冯全源. 基于磁性传感器的低失调温度补偿接口电路设计[J]. 电子与信息学报, 2024, 46(4): 1521-1528. doi: 10.11999/JEIT230601
FAN Hua, CHANG Weipeng, WANG Ce, LI Guo, LIU Jianming, LI Zonglin, WEI Qi, FENG Quanyuan. Design of Low Offset Temperature Compensation Interface Circuit Based on Magnetic Sensor[J]. Journal of Electronics & Information Technology, 2024, 46(4): 1521-1528. doi: 10.11999/JEIT230601
Citation: FAN Hua, CHANG Weipeng, WANG Ce, LI Guo, LIU Jianming, LI Zonglin, WEI Qi, FENG Quanyuan. Design of Low Offset Temperature Compensation Interface Circuit Based on Magnetic Sensor[J]. Journal of Electronics & Information Technology, 2024, 46(4): 1521-1528. doi: 10.11999/JEIT230601

基于磁性传感器的低失调温度补偿接口电路设计

doi: 10.11999/JEIT230601
基金项目: 国家自然科学基金(62371109, 62090012),重庆市自然科学基金(2022NSCQ-MSX5348),中央高校基本科研业务费专项资金(ZYGX2021YGLH203),广东省基础与应用基础研究基金(2023A1515010041),四川省科技计划(2022YFG0164)
详细信息
    作者简介:

    樊华:女,博士,教授,博士生导师,研究方向为高端传感器芯片设计、高精度数据转换器芯片设计

    常伟鹏:男,硕士生,研究方向为集成电路工程

    王策:男,硕士,研究员,研究方向为集成电路测试

    李国:男,硕士,高级工程师,副总工程师,博士生导师,研究方向为高性能集成电路设计

    刘建明:男,硕士,研究方向为集成电路的设计、应用和测试

    李宗霖:男,硕士,研究方向为集成电路芯片设计

    魏琦:男,博士,副研究员,研究方向为MEMS惯性传感器、专用集成电路设计和高性能数据转换器

    冯全源:男,博士,教授,博士生导师,研究方向为模拟集成电路芯片设计、面向通信的超宽频带多模可编程射频芯片研发等

    通讯作者:

    魏琦 weiqi@tsinghua.edu.cn

  • 中图分类号: TN43

Design of Low Offset Temperature Compensation Interface Circuit Based on Magnetic Sensor

Funds: The National Natural Science Foundation of China (62371109, 62090012), The Natural Science Foundation of Chongqing (2022NSCQ-MSX5348), Fundamental Research Funds for the Central Universities (ZYGX2021YGLH203), Guangdong Basic and Applied Basic Research Foundation (2023A1515010041), Sichuan Provincial Science and Technology Plan (2022YFG0164)
  • 摘要: 面向磁性传感器在物联网(IoT)技术中的广泛应用,该文基于180 nm CMOS工艺设计了一种具有低失调电压,低温度漂移特性的霍尔传感器接口电路。针对霍尔传感器灵敏度的温度漂移特性,该文设计了一种感温电路并与查表法相结合,调节可编程增益放大器 (PGA) 的增益有效地降低了霍尔传感器的温度系数 (TC)。在此基础上,通过在信号主通路中使用相关双采样 (CDS) 技术,极大程度上消除了霍尔传感器的失调电压。仿真结果表明,在–40°C~125°C温度范围内,霍尔传感器的TC从966.4 ppm/°C减小到了58.1 ppm/°C。信号主通路的流片结果表明,霍尔传感器的失调电压从25 mV左右减小到了4 mV左右,霍尔传感器的非线性误差为0.50%。芯片的总面积为0.69 mm2
  • 图  1  恒定电流偏置下的霍尔传感器

    图  2  常见的水平型霍尔传感器结构

    图  3  霍尔电压的温度特性

    图  4  整体电路结构框图

    图  5  带隙基准

    图  6  带隙基准电路仿真结果

    图  7  感温电路

    图  8  感温电路仿真结果

    图  9  PGA

    图  10  温度补偿电路仿真结果

    图  11  旋转电流电路

    图  12  旋转电流电路仿真结果

    图  13  芯片显微镜照片

    图  14  测试示意图

    图  15  霍尔传感器线性度拟合图线

    表  1  各信号对温度的相应

    温度范围 (°C)Vtemp范围(V)temp<7:0>VH (mV)增益
    –40~–39.211.792~1.8061001 01104.7631
    –20.35~–18.791.968~1.9821010 00114.3535
    –1.49~0.072.144~2.1581010 11114.0637
    39.36~40.922.494~2.5081100 10013.7140
    59.79~61.352.668~2.6821101 01103.7040
    78.65~80.212.842~2.8561110 00103.7940
    119.52~121.083.189~3.2031111 11004.2735
    124.22~1253.232~3.2461111 11114.3534
    下载: 导出CSV

    表  2  Voff的高低温测试结果(mV)

    –40°C–20°C0°C20°C40°C
    Voff149.5942.2133.0521.9411.75
    Voff272.4553.8730.7420.3911.32
    Voff369.1550.9233.7523.0512.26
    下载: 导出CSV

    表  3  CDS电路测试结果(mV)

    失调电压消除前失调电压消除后
    Voff124.94
    Voff225.44
    Voff324.22
    下载: 导出CSV

    表  4  本设计与相关工作性能对比

    本设计文献[13]文献[19]文献[20]
    工艺 (nm)180180800130
    电源电压 (V)55~1853~5.5
    功耗 (mW)20.828
    面积 (mm2)0.6950.951.12
    TC (ppm/°C)58.1316
    下载: 导出CSV
  • [1] LOZANOVA S V and ROUMENIN C S. Silicon hall-effect multisensor[C]. 2020 XI National Conference with International Participation, Sofia, Bulgaria, 2020: 1–4.
    [2] CRESCENTINI M, SYEDA S F, and GIBIINO G P. Hall-effect current sensors: Principles of operation and implementation techniques[J]. IEEE Sensors Journal, 2022, 22(11): 10137–10151. doi: 10.1109/JSEN.2021.3119766.
    [3] DAS P T, NHALIL H, SCHULTZ M, et al. Detection of low-frequency magnetic fields down to sub-pT resolution with planar-hall effect sensors[J]. IEEE Sensors Letters, 2021, 5(1): 1500104. doi: 10.1109/LSENS.2020.3046632.
    [4] SPINELLI A S, MINOTTI P, LAGHI G, et al. Simple model for the performance of realistic AMR magnetic field sensors[C]. The 18th International Conference on Solid-State Sensors, Actuators and Microsystems, Anchorage, AK, 2015: 2204–2207.
    [5] HADJIGEORGIOU N, HRISTOFOROU E, and SOTIRIADIS P P. Closed-loop current-feedback, signal-chopped, low noise AMR sensor with high linearity[C]. The 6th International Conference on Modern Circuits and Systems Technologies, Thessaloniki, Greece, 2017: 1–4.
    [6] YAN Shaohua, ZHOU Zitong, YANG Yaodi, et al. Developments and applications of tunneling magnetoresistance sensors[J]. Tsinghua Science and Technology, 2022, 27(3): 443–454. doi: 10.26599/TST.2021.9010061.
    [7] BHASKARRAO N K, ANOOP C S, and DUTTA P K. A novel linearizing signal conditioner for half-bridge-based TMR angle sensor[J]. IEEE Sensors Journal, 2021, 21(3): 3216–3224. doi: 10.1109/JSEN.2020.3023089.
    [8] XU Xiaopeng, LIU Tingzhang, ZHU Min, et al. New small-volume high-precision TMR busbar DC current sensor[J]. IEEE Transactions on Magnetics, 2020, 56(2): 4000105. doi: 10.1109/TMAG.2019.2953671.
    [9] FU Peiyuan and ZHENG Feng. A new GMR sensor based on gradient magnetic field detection for DC and wide-band current measurement[C]. 2022 IEEE Region 10 Symposium, Mumbai, India, 2022: 1–6.
    [10] STETCO E M, AUREL POP O, and GRAMA A. Simulation model of a GMR based current sensor[C]. 2020 IEEE 26th International Symposium for Design and Technology in Electronic Packaging, Pitesti, Romania, 2020: 17–20.
    [11] RIPKA P and JANOSEK M. Advances in magnetic field sensors[J]. IEEE Sensors Journal, 2010, 10(6): 1108–1116. doi: 10.1109/JSEN.2010.2043429.
    [12] HALL E H. On a new action of the magnet on electric currents[J]. The London,Edinburgh,and Dublin Philosophical Magazine and Journal of Science, 1880, 9(55): 225–230. doi: 10.1080/14786448008626828.
    [13] 蔚道嘉. 低噪声线性霍尔传感器的研究与设计[D]. [硕士论文], 西安电子科技大学, 2020.

    WEI Daojia. Research on and design of low noise linear hall sensor[D]. [Master dissertation], Xidian University, 2020.
    [14] 胡杏杏. 电流模式的高灵敏度CMOS霍尔传感器研究与实现[D]. [硕士论文], 南京邮电大学, 2020.

    HU Xingxing. Research and implementation of high-sensitivity CMOS integrated hall sensor based on the current-mode[D]. [Master dissertation], Nanjing University of Posts and Telecommunications, 2020.
    [15] LEI Kameng, MAK P I, and MARTINS R P. A 0.45-V 3.3-µW resistor-based temperature sensor achieving 10mK resolution in 65-nm CMOS[C]. 2021 IEEE International Conference on Integrated Circuits, Technologies and Applications, Zhuhai, China, 2021: 127–128.
    [16] WANG Bo, LAW M K, and BERMAK A. A BJT-Based CMOS Temperature Sensor Achieving an Inaccuracy of ± 0.45°C (3σ) from –50°C to 180°C and a resolution-FoM of 7.2 pJ. K2 at 150°C[C]. 2022 IEEE International Solid- State Circuits Conference, San Francisco, USA, 2022: 72–74.
    [17] TANG Zhong, FANG Yun, YU Xiaopeng, et al. A 1-V diode-based temperature sensor with a resolution FoM of 3.1pJ·K2 in 55nm CMOS[C]. 2021 IEEE Custom Integrated Circuits Conference, Austin, USA, 2021: 1–2.
    [18] PAUN M A, SALLESE J M, and KAYAL M. Temperature considerations on Hall Effect sensors current-related sensitivity behaviour[C]. The 19th IEEE International Conference on Electronics, Circuits, and Systems, Seville, Spain, 2012: 201–204.
    [19] CHEN Xiaoqing, XU Yue, XIE Xiaopeng, et al. A novel Hall dynamic offset cancellation circuit based on four-phase spinning current technique[C]. 2015 China Semiconductor Technology International Conference, Shanghai, China, 2015: 1–3.
    [20] KEIL M, JANSCHITZ J G, and MOTZ M. A Hall effect magnetic sensor with ratiometric output, utilizing a self-regulating chopped amplifier for compensation of offset, temperature and lifetime drift effects[C]. 2022 Austrochip Workshop on Microelectronics, Villach, Austria, 2022: 1–4.
  • 加载中
图(15) / 表(4)
计量
  • 文章访问数:  427
  • HTML全文浏览量:  295
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-16
  • 修回日期:  2023-09-22
  • 网络出版日期:  2023-09-28
  • 刊出日期:  2024-04-24

目录

    /

    返回文章
    返回