高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于皮肤-脂肪模型的太赫兹体内多输入多输出信道特性分析与建模

张杰 尹镜涵 邵羽 廖希 王洋 余子明

张杰, 尹镜涵, 邵羽, 廖希, 王洋, 余子明. 基于皮肤-脂肪模型的太赫兹体内多输入多输出信道特性分析与建模[J]. 电子与信息学报, 2024, 46(4): 1276-1285. doi: 10.11999/JEIT230578
引用本文: 张杰, 尹镜涵, 邵羽, 廖希, 王洋, 余子明. 基于皮肤-脂肪模型的太赫兹体内多输入多输出信道特性分析与建模[J]. 电子与信息学报, 2024, 46(4): 1276-1285. doi: 10.11999/JEIT230578
ZHANG Jie, YIN Jinghan, SHAO Yu, LIAO Xi, WANG Yang, YU Ziming. In-vivo MIMO Channel Characteristics Analysis and Modeling Based on Skin-fat Model at Terahertz Frequency[J]. Journal of Electronics & Information Technology, 2024, 46(4): 1276-1285. doi: 10.11999/JEIT230578
Citation: ZHANG Jie, YIN Jinghan, SHAO Yu, LIAO Xi, WANG Yang, YU Ziming. In-vivo MIMO Channel Characteristics Analysis and Modeling Based on Skin-fat Model at Terahertz Frequency[J]. Journal of Electronics & Information Technology, 2024, 46(4): 1276-1285. doi: 10.11999/JEIT230578

基于皮肤-脂肪模型的太赫兹体内多输入多输出信道特性分析与建模

doi: 10.11999/JEIT230578
基金项目: 国家自然科学基金(62271095, 62171071),重庆市自然科学基金(cstc2021jcyj-msxmX0634, CSTB2023NSCQ-MSX0750),重庆市自然科学基金创新发展联合基金(CSTB2022NSCQ-LZX0073)
详细信息
    作者简介:

    张杰:男,博士,教授,研究方向为小蜂窝网络规划、人工智能、天线与电波传播

    尹镜涵:男,硕士生,研究方向为太赫兹信道测量与建模

    邵羽:男,博士,副教授,研究方向为天线与电波传播、生物电磁学、计算电磁学等

    廖希:女,博士,副教授,研究方向为毫米波太赫兹信道测量与建模、涡旋电磁波通信、通信感知一体化信道建模等

    王洋:男,博士,教授,研究方向为毫米波太赫兹信道测量与建模、涡旋电磁波、智能反射面等

    余子明:男,硕士,高级工程师,研究方向为太赫兹信道传播建模、通信感知一体化信道建模

    通讯作者:

    邵羽 shaoyu@cqupt.edu.cn

  • 中图分类号: TN929.5

In-vivo MIMO Channel Characteristics Analysis and Modeling Based on Skin-fat Model at Terahertz Frequency

Funds: The National Natural Science Foundation of China (62271095, 62171071), The Natural Science Foundation of Chongqing (cstc2021jcyjmsxmX0634, CSTB2023NSCQ-MSX0750), The Natural Science Foundation Innovation and Development Joint Fund Project of Chongqing (CSTB2022NSCQ-LZX0073)
  • 摘要: 为探究太赫兹(THz)频段体内多输入多输出(MIMO)通信系统的传输特性,该文在0.8~1.2 THz下构建了精确的皮肤-脂肪模型,对皮肤-脂肪模型中垂直方向和水平方向的链路进行全波电磁仿真,分析太赫兹体内信道特性,建立路径损耗模型。首先,结合太赫兹频段人体组织的介电特性和人体皮肤的解剖学结构构建皮肤-脂肪模型。其次,对比分析了3条链路的路径损耗和阴影衰落,提出带有等效吸收因子的太赫兹体内路径损耗模型。最后,对3条链路的莱斯K因子、均方根时延扩展、MIMO容量进行分析。仿真分析表明,带有等效吸收因子的太赫兹体内路径损耗模型可以更准确地描述加长距离垂直链路2的路径损耗,发射端在体表可以增强MIMO容量。该文的工作可以为太赫兹体内通信系统的设计和优化提供参考。
  • 图  1  皮肤-脂肪模型

    图  2  皮肤-脂肪模型各层的介电特性

    图  3  链路位置和天线排布

    图  4  路径损耗预测与CI、FI模型

    图  5  路径损耗的CIF,ABG模型

    图  6  路径损耗模型的阴影衰落

    图  7  路径损耗预测与修正FI模型

    图  8  路径损耗的修正ABG模型

    图  9  不同模型拟合路径损耗的RMSE

    图  10  距离为1200 μm的功率时延谱

    图  11  3条链路的莱斯K因子

    图  12  3条链路的均方根时延扩展

    图  13  3条链路的信道容量

    表  1  皮肤各层分界面的A,B参数(μm)

    界面 参数A 参数B
    1 10 200
    2 10 400
    3 20 400
    4 100 400
    下载: 导出CSV

    表  2  水和血液的双德拜模型

    $ {\varepsilon _s} $ $ {\varepsilon _2} $ $ {\varepsilon _\infty } $ $ {\tau _1} $ (ps) $ {\tau _2} $ (ps)
    78.8 6.6 4.1 10.6 0.18
    血液 130.0 3.8 2.1 14.4 0.10
    下载: 导出CSV

    表  3  路径损耗模型的拟合参数

    CI 模型 FI模型 CIF模型 ABG模型
    PLE RMSE $ \alpha $ $ \beta $ RMSE PLE b RMSE $ \alpha $ $ \beta $ $ \gamma $ RMSE
    垂直链路1 6.15 4.52 38.70 3.40 2.42 6.29 0.29 5.89 3.35 4.91 5.10 4.48
    垂直链路2 5.35 5.49 17.28 4.91 5.60 5.51 0.66 5.36 4.72 –51.14 10.38 5.39
    水平链路 6.48 4.93 37.92 3.87 3.17 6.90 1.08 5.77 4.98 –95.96 18.23 5.25
    下载: 导出CSV

    表  4  3条链路修正的路径损耗模型的拟合参数

    修正的FI模型修正的ABG模型
    $ {\mu _{{\text{abs}}}} $ $ \alpha $RMSE $ {\mu _{{\text{abs}}}} $ $ \beta $ $ \gamma $ RMSE
    垂直链路1$ 5.242 \times {10^{ - 3}} $47.022.611$ 6.604 \times {10^{{{ - }}3}} $11.595.104.52
    垂直链路2$ 1.236 \times {10^{ - 2}} $32.624.741$ 1.129 \times {10^{{{ - }}2}} $–36.5510.384.83
    水平链路$ 8.879 \times {10^{{{ - }}3}} $47.393.259$ 1.407 \times {10^{{{ - }}2}} $–80.8118.235.38
    下载: 导出CSV
  • [1] AKYILDIZ I F, HAN Chong, HU Zhifeng, et al. Terahertz band communication: An old problem revisited and research directions for the next decade[J]. IEEE Transactions on Communications, 2022, 70(6): 4250–4285. doi: 10.1109/TCOMM.2022.3171800.
    [2] WALTHER M, FISCHER B M, ORTNER A, et al. Chemical sensing and imaging with pulsed terahertz radiation[J]. Analytical and Bioanalytical Chemistry, 2010, 397(3): 1009–1017. doi: 10.1007/s00216-010-3672-1.
    [3] JORNET J M and AKYILDIZ I F. Information capacity of pulse-based wireless nanosensor networks[C]. 2011 8th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks, Salt Lake City, USA, 2011: 80–88. doi: 10.1109/SAHCN.2011.5984951.
    [4] BUSH S F, PALUH J L, PIRO G, et al. Defining communication at the bottom[J]. IEEE Transactions on Molecular, Biological and Multi-Scale Communications, 2015, 1(1): 90–96. doi: 10.1109/TMBMC.2015.2465513.
    [5] ABBASI Q H, EL SALLABI H, CHOPRA N, et al. Terahertz channel characterization inside the human skin for nano-scale body-centric networks[J]. IEEE Transactions on Terahertz Science and Technology, 2016, 6(3): 427–434. doi: 10.1109/TTHZ.2016.2542213.
    [6] ATAKAN B, AKAN O B, and BALASUBRAMANIAM S. Body area nanonetworks with molecular communications in nanomedicine[J]. IEEE Communications Magazine, 2012, 50(1): 28–34. doi: 10.1109/MCOM.2012.6122529.
    [7] PIRO G, BOGGIA G, and GRIECO L A. On the design of an energy-harvesting protocol stack for body area nano-NETworks[J]. Nano Communication Networks, 2015, 6(2): 74–84. doi: 10.1016/j.nancom.2014.10.001.
    [8] WANG Bin, XU Ke, ZHENG Shilian, et al. A deep learning-based intelligent receiver for improving the reliability of the MIMO wireless communication system[J]. IEEE Transactions on Reliability, 2022, 71(2): 1104–1115. doi: 10.1109/TR.2022.3148114.
    [9] HAN Chong, WANG Yiqin, LI Yuanbo, et al. Terahertz wireless channels: A holistic survey on measurement, modeling, and analysis[J]. IEEE Communications Surveys & Tutorials, 2022, 24(3): 1670–1707. doi: 10.1109/COMST.2022.3182539.
    [10] BERRY E, FITZGERALD A J, ZINOV'EV N N, et al. Optical properties of tissue measured using terahertz-pulsed imaging[C]. SPIE 5030, Medical Imaging 2003: Physics of Medical Imaging, San Diego, USA, 2003, 5030: 459–470. doi: 10.1117/12.479993.
    [11] HAYUT I, PUZENKO A, ISHAI P B, et al. The helical structure of sweat ducts: Their influence on the electromagnetic reflection spectrum of the skin[J]. IEEE Transactions on Terahertz Science and technology, 2013, 3(2): 207–215. doi: 10.1109/TTHZ.2012.2227476.
    [12] YANG Ke, PELLEGRINI A, BRIZZI A, et al. Numerical analysis of the communication channel path loss at the THz band inside the fat tissue[C]. 2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications, Singapore, 2013: 1–3. doi: 10.1109/IMWS-BIO.2013.6756165.
    [13] BETZALEL N, ISHAI P B, and FELDMAN Y. The human skin as a sub-THz receiver–does 5G pose a danger to it or not?[J]. Environmental Research, 2018, 163: 208–216. doi: 10.1016/j.envres.2018.01.032.
    [14] BETZALEL N, BEN ISHAI P, PUZENKO A, et al. Emission from human skin in the sub THz frequency band[J]. Scientific Reports, 2022, 12(1): 4720. doi: 10.1038/s41598-022-08432-5.
    [15] ABDELAZIZ A, YANG Ke, QARAQE K, et al. Multiple antenna techniques for terahertz nano-bio communication[C]. 2018 IEEE 4th Middle East Conference on Biomedical Engineering, Tunis, Tunisia, 2018: 67–71. doi: 10.1109/MECBME.2018.8402408.
    [16] ABBASI Q H, ABDELAZIZ A, and ZHANG Rui. Capacity evaluation of in-vivo nano-sensors at terahertz frequencies using multiple antenna techniques[C]. URSI Asia-Pacific Radio Science Conference, New Delhi, India, 2019: 16–19.
    [17] ELAYAN H, SHUBAIR R M, and JORNET J M. Bio-electromagnetic THz propagation modeling for in-vivo wireless nanosensor networks[C]. 2017 11th European Conference on Antennas and Propagation, Paris, France, 2017: 426–430. doi: 10.23919/EuCAP.2017.7928627.
    [18] PICKWELL E, COLE B E, FITZGERALD A J, et al. Simulation of terahertz pulse propagation in biological systems[J]. Applied Physics Letters, 2004, 84(12): 2190–2192. doi: 10.1063/1.1688448.
    [19] REID C B, REESE G, GIBSON A P, et al. Terahertz time-domain spectroscopy of human blood[J]. IEEE Transactions on Terahertz Science and Technology, 2013, 3(4): 363–367. doi: 10.1109/TTHZ.2013.2267414.
    [20] YANG K, PELLEGRINI A, MUNOZ M O, et al. Numerical analysis and characterization of THz propagation channel for body-centric nano-communications[J]. IEEE Transactions on Terahertz Science and Technology, 2015, 5(3): 419–426. doi: 10.1109/TTHZ.2015.2419823.
    [21] TANG Pan, ZHANG Jianhua, TIAN Haoyu, et al. Channel measurement and path loss modeling from 220 GHz to 330 GHz for 6G wireless communications[J]. China Communications, 2021, 18(5): 19–32. doi: 10.23919/JCC.2021.05.002.
    [22] HE Jia, CHEN Yi, WANG Yiqin, et al. Channel measurement and path-loss characterization for low-terahertz indoor scenarios[C]. 2021 IEEE International Conference on Communications Workshops, Montreal, Canada, 2021: 1–6. doi: 10.1109/ICCWorkshops50388.2021.9473756.
    [23] ELAYAN H, SHUBAIR R M, JORNET J M, et al. Terahertz channel model and link budget analysis for intrabody nanoscale communication[J]. IEEE Transactions on Nanobioscience, 2017, 16(6): 491–503. doi: 10.1109/TNB.2017.2718967.
    [24] MIAO Haiyang, ZHANG Jianhua, TANG Pan, et al. Sub-6 GHz to mmWave for 5G-advanced and beyond: Channel measurements, characteristics and impact on system performance[J]. IEEE Journal on Selected Areas in Communications, 2023, 41(6): 1945–1960. doi: 10.1109/JSAC.2023.3274175.
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  265
  • HTML全文浏览量:  125
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-12
  • 修回日期:  2023-12-27
  • 网络出版日期:  2024-01-08
  • 刊出日期:  2024-04-24

目录

    /

    返回文章
    返回