高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于断面水边线定向的视频测流摄像机标定

张振 姜天生 赵丽君 程泽

张振, 姜天生, 赵丽君, 程泽. 基于断面水边线定向的视频测流摄像机标定[J]. 电子与信息学报, 2024, 46(4): 1428-1437. doi: 10.11999/JEIT230573
引用本文: 张振, 姜天生, 赵丽君, 程泽. 基于断面水边线定向的视频测流摄像机标定[J]. 电子与信息学报, 2024, 46(4): 1428-1437. doi: 10.11999/JEIT230573
ZHANG Zhen, JIANG Tiansheng, ZHAO Lijun, CHENG Ze. Camera Calibration Using Cross-Section Waterline Orientation for Video-based Flow Measurement[J]. Journal of Electronics & Information Technology, 2024, 46(4): 1428-1437. doi: 10.11999/JEIT230573
Citation: ZHANG Zhen, JIANG Tiansheng, ZHAO Lijun, CHENG Ze. Camera Calibration Using Cross-Section Waterline Orientation for Video-based Flow Measurement[J]. Journal of Electronics & Information Technology, 2024, 46(4): 1428-1437. doi: 10.11999/JEIT230573

基于断面水边线定向的视频测流摄像机标定

doi: 10.11999/JEIT230573
基金项目: 国家自然科学基金青年基金 (51709083),国家重点研发计划(2017YFC0405703)
详细信息
    作者简介:

    张振:男,副教授,研究方向为图像法测流及水利智能感知技术

    姜天生:男,硕士生,研究方向为自适应时空测速法测流技术

    赵丽君:女,硕士生,研究方向为多传感器融合测流

    程泽:男,硕士生,研究方向为基于图像法的灌渠测流系统研发

    通讯作者:

    张振 zz_hhuc@hhu.edu.cn

  • 中图分类号: TN911.73; TH815

Camera Calibration Using Cross-Section Waterline Orientation for Video-based Flow Measurement

Funds: The Youth Foundation of National Natural Science Foundation of China (51709083), The National Key Research and Development Program (2017YFC0405703)
  • 摘要: 针对现有基于直接线性变化法(DLT)的图像法测流技术依赖于地面控制点,存在效率低、风险高、宽断面天然河流操作难度大等问题,该文提出一种基于断面水边线定向的摄像机姿态角标定方法(CSWO)。该方法将标定过程分解为实验室内参标定和现场外参标定两步,其中后者又被划分为摄像机定位和定向两个环节。定向环节中首先在摄像机安装时将光轴与断面方向对齐,使方位角置零。然后利用无畸变图像中人工标注的平直断面水边线的斜率计算出横滚角。接下来通过计算水边线与图像纵轴交点作为其亚像素像方坐标。最后依据透视投影成像模型,联合水位与插值断面高程求得的物方坐标解算出俯仰角。该方法应用于时空图像测速法(STIV),实现了200 m宽河流的免像控表面流速测量。结果表明:起点距的最大绝对误差为0.59 m,最大相对误差为0.45%,表面流速的最大相对误差小于6.3%。
  • 图  1  算法整体流程图

    图  2  系统布设方案示意图

    图  3  水边线及标注点示意

    图  4  FFT-STIV原理示意

    图  5  标注场景示意图

    图  6  攀枝花水文站大断面

    图  7  测流系统布设示意图

    图  8  断面及流向示意图

    图  9  硬件系统结构框图

    图  10  测次15测速线起点距对比

    图  11  比测实验现场状况

    图  12  表面流速测量结果对比

    图  13  测速线9处STI

    表  1  内参矩阵和畸变参数

    $ m $(pixel) $ n $(pixel) $ {f_x} $(pixel) $ {f_y} $(pixel) $ {C_x} $(pixel) $ {C_y} $(pixel) $ {k_1} $ $ {k_2} $ $ {p_1} $ $ {p_2} $
    标定结果 3840 2160 2876.507 2884.631 1947.382 1043.743 –0.407 0.001 0.001 –0.001
    下载: 导出CSV

    表  2  各水位级下俯仰角、横滚角标定结果对比

    测次日期时间场景水位级水位(m)$ R\left(x_{1}, y_{1}\right) $$ R_{2}\left(x_{2}, y_{2}\right) $俯仰角(°)横滚角(°)
    121040715:00985.34(990, 443)(2071, 435)20.160.42
    221020410:30986.19(982, 445)(2125, 441)19.700.20
    321041620:05986.34(984, 439)(2127, 433)19.790.30
    421041620:10986.34(984, 439)(2125, 431)19.810.40
    520111810:30986.37(960, 437)(2151, 429)19.840.39
    620111810:35986.37(966, 437)(2143, 431)19.810.29
    721041514:18986.37(984, 437)(2141, 427)19.870.50
    82103189:00986.40(978, 437)(2027, 427)19.880.55
    921041413:00986.42(984, 437)(2141, 431)19.790.30
    1021040814:00986.42(1006, 439)(2079, 429)19.820.53
    1121040816:00986.62(974, 437)(2187, 431)19.790.28
    122103169:00986.90(978, 427)(2143, 419)19.810.39
    1321022311:00987.03(982, 423)(2095, 415)19.840.41
    142207049:35993.80(1100, 257)(2057, 255)19.910.12
    152207049:20993.84(1096, 257)(2073, 255)19.890.12
    162207049:26993.85(1092, 257)(2071, 255)19.890.12
    1720082110:00997.96(1008, 206)(1824, 202)19.880.28
    下载: 导出CSV

    表  3  DSO法和CSWO法实验结果

    测次 水位(m) 起点距真值(m) 绝对误差(m) 相对误差(%)
    DSO CSWO DSO CSWO
    1 985.34 55.00 0.29 0.02 0.22 0.02
    2 986.19 90.00 0.64 0.12 0.51 0.09
    3 986.34 65.00 0.24 0.18 0.18 0.14
    4 986.34 90.00 0.81 0.02 0.62 0.01
    5 986.37 55.00 0.13 0.17 0.10 0.13
    6 986.37 65.00 0.64 0.23 0.50 0.18
    7 986.37 90.00 0.79 0.01 0.61 0.01
    8 986.40 120.00 1.64 0.27 1.27 0.21
    9 986.42 65.00 0.34 0.09 0.26 0.07
    10 986.42 105.00 0.94 0.13 0.72 0.10
    11 986.62 135.00 1.18 0.59 0.90 0.45
    12 986.90 65.00 0.26 0.28 0.19 0.21
    13 987.03 90.00 0.72 0.19 0.55 0.15
    14 993.80 90.00 0.97 0.29 0.57 0.17
    15 993.84 55.00 0.42 0.05 0.25 0.03
    16 993.85 65.00 0.66 0.00 0.39 0.00
    17 997.96 55.00 0.31 0.28 0.17 0.15
    下载: 导出CSV
  • [1] LE COZ J, HAUET A, PIERREFEU G, et al. Performance of Image-based Velocimetry (LSPIV) applied to flash-flood discharge measurements in mediterranean rivers[J]. Journal of Hydrology, 2010, 394(1/2): 42–52. doi: 10.1016/j.jhydrol.2010.05.049.
    [2] FUJITA I, WATANABE H, and TSUBAKI R. Development of a non-intrusive and efficient flow monitoring technique: The Space-Time Image Velocimetry (STIV)[J]. International Journal of River Basin Management, 2007, 5(2): 105–114. doi: 10.1080/15715124.2007.9635310.
    [3] TAURO F, TOSI F, MATTOCCIA S, et al. Optical Tracking Velocimetry (OTV): Leveraging optical flow and trajectory-based filtering for surface streamflow observations[J]. Remote Sensing, 2018, 10(12): 2010. doi: 10.3390/rs10122010.
    [4] 张振, 徐枫, 王鑫, 等. 河流水面成像测速研究进展[J]. 仪器仪表学报, 2015, 36(7): 1441–1450. doi: 10.19650/j.cnki.cjsi.2015.07.001.

    ZHANG Zhen, XU Feng, WANG Xin, et al. Research progress on river surface imaging velocimetry[J]. Chinese Journal of Scientific Instrument, 2015, 36(7): 1441–1450. doi: 10.19650/j.cnki.cjsi.2015.07.001.
    [5] 蒋海军. 大视场条件下的摄像机标定方法研究[D]. [硕士论文], 国防科技大学, 2017. doi: 10.27052/d.cnki.gzjgu.2017.000625.

    JIANG Haijun. Research on camera calibration method in large field of view[D]. [Master dissertation], National University of Defense Technology, 2017. doi: 10.27052/d.cnki.gzjgu.2017.000625.
    [6] 张振, 徐枫, 沈洁, 等. 基于变高单应的单目视觉平面测量方法[J]. 仪器仪表学报, 2014, 35(8): 1860–1868. doi: 10.19650/j.cnki.cjsi.2014.08.025.

    ZHANG Zhen, XU Feng, SHEN Jie, et al. Plane measurement method with monocular vision based on variable-height homography[J]. Chinese Journal of Scientific Instrument, 2014, 35(8): 1860–1868. doi: 10.19650/j.cnki.cjsi.2014.08.025.
    [7] 杨聃, 邵广俊, 胡伟飞, 等. 基于图像的河流表面测速研究综述[J]. 浙江大学学报:工学版, 2021, 55(9): 1752–1763. doi: 10.3785/j.issn.1008-973X.2021.09.017.

    YANG Dan, SHAO Guangjun, HU Weifei, et al. Review of image-based river surface velocimetry research[J]. Journal of Zhejiang University:Engineering Science, 2021, 55(9): 1752–1763. doi: 10.3785/j.issn.1008-973X.2021.09.017.
    [8] AL-MAMARI M M, KANTOUSH S A, KOBAYASHI S, et al. Real-time measurement of flash-flood in a Wadi area by LSPIV and STIV[J]. Hydrology, 2019, 6(1): 27. doi: 10.3390/hydrology6010027.
    [9] 曹列凯, DETERT M, 李丹勋. 基于无人机的长河段表面流场测量系统与应用[J]. 清华大学学报:自然科学版, 2022, 62(12): 1922–1929. doi: 10.16511/j.cnki.qhdxxb.2022.21.012.

    CAO Liekai, DETERT M, and LI Danxun. Airborne image velocimetry system and its application to measure the surface flow fields of long river reaches[J]. Journal of Tsinghua University:Science and Technology, 2022, 62(12): 1922–1929. doi: 10.16511/j.cnki.qhdxxb.2022.21.012.
    [10] TSAI R. A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses[J]. IEEE Journal on Robotics and Automation, 1987, 3(4): 323–344. doi: 10.1109/JRA.1987.1087109.
    [11] HOLLAND K T, HOLMAN R A, LIPPMANN T C, et al. Practical use of video imagery in nearshore oceanographic field studies[J]. IEEE Journal of Oceanic Engineering, 1997, 22(1): 81–92. doi: 10.1109/48.557542.
    [12] BECHLE A J, WU C H, LIU Wencheng, et al. Development and application of an automated river-estuary discharge imaging system[J]. Journal of Hydraulic Engineering, 2012, 138(4): 327–339. doi: 10.1061/(ASCE)HY.1943-7900.0000521.
    [13] HUANG Weiche, YOUNG C C, and LIU Wencheng. Application of an automated discharge imaging system and LSPIV during typhoon events in Taiwan[J]. Water, 2018, 10(3): 280. doi: 10.20944/preprints201802.0089.v1.
    [14] COSTA F A L and MITISHITA E A. An approach to improve direct sensor orientation using the integration of photogrammetric and lidar datasets[J]. International Journal of Remote Sensing, 2019, 40(14): 5651–5672. doi: 10.1080/01431161.2019.1580794.
    [15] ZHANG Zhen, ZHAO Lijun, LIU Boyuan, et al. Free-surface velocity measurement using direct sensor orientation-based STIV[J]. Micromachines, 2022, 13(8): 1167. doi: 10.3390/mi13081167.
    [16] LIU Wencheng and HUANG Weiche. Development of a three-axis accelerometer and Large-Scale Particle Image Velocimetry (LSPIV) to enhance surface velocity measurements in rivers[J]. Computers & Geosciences, 2021, 155: 104866. doi: 10.1016/j.cageo.2021.104866.
    [17] 张振, 吕莉, 石爱业, 等. 基于物像尺度变换的河流水面流场定标方法[J]. 仪器仪表学报, 2017, 38(9): 2273–2281. doi: 10.19650/j.cnki.cjsi.2017.09.023.

    ZHANG Zhen, LV Li, SHI Aiye, et al. River surface flow field calibration method based on object-image scaling[J]. Chinese Journal of Scientific Instrument, 2017, 38(9): 2273–2281. doi: 10.19650/j.cnki.cjsi.2017.09.023.
    [18] TSUBAKI R. On the texture angle detection used in Space-Time Image Velocimetry (STIV)[J]. Water Resources Research, 2017, 53(12): 10908–10914. doi: 10.1002/2017WR021913.
    [19] FUJITA I, KOSAKA Y, and YOROZUYA A. Tracking of river surface features by space time imageing[C]. The 15th International Symposium on Flow Visualization, Minsk, Belarus, 2012: 25–28.
    [20] ZHANG Zhen, ZHOU Yang, LIU Haiyun, et al. Visual measurement of water level under complex illumination conditions[J]. Sensors, 2019, 19(19): 4141. doi: 10.3390/s19194141.
    [21] 王慧斌, 董伟, 张振, 等. 基于时空图像频谱的时均流场重建方法[J]. 仪器仪表学报, 2015, 36(3): 623–631. doi: 10.19650/j.cnki.cjsi.2015.03.018.

    WANG Huibin, DONG Wei, ZHANG Zhen, et al. Time-averaged flow field reconstruction method based on spectrum of spatio-temporal image[J]. Chinese Journal of Scientific Instrument, 2015, 36(3): 623–631. doi: 10.19650/j.cnki.cjsi.2015.03.018.
    [22] ZHANG Zhengyou. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330–1334. doi: 10.1109/34.888718.
    [23] FUJITA I, NOTOYA Y, TANI K, et al. Efficient and accurate estimation of water surface velocity in STIV[J]. Environmental Fluid Mechanics, 2019, 19(5): 1363–1378. doi: 10.1007/s10652-018-9651-3.
    [24] 赵浩源, 陈华, 刘维高, 等. 基于河流表面时空图像识别的测流方法[J]. 水资源研究, 2020, 9(1): 1–11. doi: 10.12677/JWRR.2020.91001.

    ZHAO Haoyuan, CHEN Hua, LIU Weigao, et al. Application of flow measurement method based on space-time image recognition of river surface[J]. Journal of Water Resources Research, 2020, 9(1): 1–11. doi: 10.12677/JWRR.2020.91001.
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  144
  • HTML全文浏览量:  116
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-09
  • 修回日期:  2023-09-27
  • 网络出版日期:  2023-10-16
  • 刊出日期:  2024-04-24

目录

    /

    返回文章
    返回