高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

星下点观测的星载卫星导航反射信号海面风矢量极大似然估计

王峰 李建强 张国栋 张琦 杨东凯

王峰, 李建强, 张国栋, 张琦, 杨东凯. 星下点观测的星载卫星导航反射信号海面风矢量极大似然估计[J]. 电子与信息学报, 2024, 46(4): 1418-1427. doi: 10.11999/JEIT230464
引用本文: 王峰, 李建强, 张国栋, 张琦, 杨东凯. 星下点观测的星载卫星导航反射信号海面风矢量极大似然估计[J]. 电子与信息学报, 2024, 46(4): 1418-1427. doi: 10.11999/JEIT230464
WANG Feng, LI Jianqiang, ZHANG Guodong, ZHANG Qi, YANG Dongkai. Maximum Likelihood Estimation of Ocean Wind Vector Using Subsatellite-Observation Spaceborne Global Navigation Satellite System-Reflectometry[J]. Journal of Electronics & Information Technology, 2024, 46(4): 1418-1427. doi: 10.11999/JEIT230464
Citation: WANG Feng, LI Jianqiang, ZHANG Guodong, ZHANG Qi, YANG Dongkai. Maximum Likelihood Estimation of Ocean Wind Vector Using Subsatellite-Observation Spaceborne Global Navigation Satellite System-Reflectometry[J]. Journal of Electronics & Information Technology, 2024, 46(4): 1418-1427. doi: 10.11999/JEIT230464

星下点观测的星载卫星导航反射信号海面风矢量极大似然估计

doi: 10.11999/JEIT230464
基金项目: 博士后创新人才支持计划(BX20200039),上海市产业协同创新项目(2021-cyxt2-kj05)
详细信息
    作者简介:

    王峰:男,博士后,研究方向为卫星导航应用

    李建强:男,研究员,研究方向为运载技术

    张国栋:男,工程师,研究方向为卫星导航系统

    张琦:男,高级工程师,研究方向为运载技术

    杨东凯:男,教授,研究方向为卫星导航应用

    通讯作者:

    杨东凯 yangdongkai@sina.com

  • 中图分类号: TN87; P237

Maximum Likelihood Estimation of Ocean Wind Vector Using Subsatellite-Observation Spaceborne Global Navigation Satellite System-Reflectometry

Funds: China National Postdoctoral Program for Innovative Talents (BX20200039), Shanghai Industrial Collaborative Innovation Project (2021-cyxt2-kj05)
  • 摘要: 该文针对星载全球导航卫星反射计(GNSS-R)镜面反射信号对海面风向不敏感导致海面风向反演难问题,分析非镜向海面散射信号特征,提出星下点非镜向观测模式,定义该模式下海面风矢量敏感特征观测量,在此基础上提出基于星载GNSS-R海面风矢量极大似然估计(MLE)反演算法直接利用两颗及以上导航卫星的星下点非镜向散射信号进行海面风矢量的反演,并提出风矢量搜索算法提高反演效率。通过搭建星载GNSS-R仿真平台验证算法的可行性和评估算法性能。结果表明:所提算法可直接利用非镜向独立观测模式下的多颗导航卫星散射信号反演得到海面风速和风向;多星观测可消除观测几何导致的模糊解从而将海风风向4个模糊解降至2个模糊解,但无法消除海浪谱的对称性导致的海面风向模糊解。在2~25 m/s的风速内,当信噪比(SNR)大于11 dB时,3星观测的风速均方根误差(RMSE)优于2 m/s,风向的均方根误差优于15°。
  • 图  1  镜向模式与非镜向观测模式示意图

    图  2  星载GNSS-R本地坐标系示意图

    图  3  海面散射系数随散射角的变化

    图  4  不同散射角的海面散射系数随海面风向的变化

    图  5  镜向和非镜向散射系数与海面风速和海面风向的关系

    图  6  星下点非镜向观测模式散射信号信噪比与入射角的关系

    图  7  星下点非镜向DDMA与海面风向的关系

    图  8  多星非镜向观测示意图

    图  9  双星观测海面风矢量反演结果

    图  10  海面风向反演多模糊解示意图

    图  11  3星观测海面风矢量反演结果

    图  12  双星观测海面风矢量反演精度与信噪比的关系

    图  13  3星观测海面风矢量反演精度与信噪比的关系

    表  1  星下点非镜向配置参数表

    符号参数
    $ {P_{\text{t}}} $发射信号功率26.8 W
    $ {G_{\text{t}}} $发射天线增益12.1 dB
    $ {h_{\text{t}}} $发射机高度20 200 km
    $ {h_{\text{r}}} $接收机高度510 km
    $ {G_{\text{r}}} $接收天线增益12.1 dB
    $ {T_{{\text{coh}}}} $相干积分时间1 ms
    $ {N_{{\text{incoh}}}} $非相干累加次数1 000
    ${D_{\text{c}}}$检测因子26.3
    $ {f_{\text{B}}} $接收机带宽2.5 MHz
    ${T_{{\text{eff}}}}$等效温度25°C
    ${\theta _{\text{i}}}$入射角[0,90°]
    $ {\varphi _{\text{w}}} $风向90°
    $ {u_{10}} $风速5~20 m/s
    下载: 导出CSV
  • [1] 侯一筠, 尹宝树, 管长龙, 等. 我国海洋动力灾害研究进展与展望[J]. 海洋与湖沼, 2020, 51(4): 759–767. doi: 10.11693/hyhz20200100029.

    HOU Yijun, YIN Baoshu, GUAN Changlong, et al. Progress and prospect in research on marine dynamic disasters in China[J]. Oceanologia et Limnologia Sinica, 2020, 51(4): 759–767. doi: 10.11693/hyhz20200100029.
    [2] 自然资源部, 海洋预警监测司. 2020年中国海洋灾害公报[R]. 2021.

    Ministry of Natural Resources and Marine Early Warning and Monitoring Department. Bulletin of China marine disaster 2020[R]. 2021.
    [3] 自然资源部, 海洋预警监测司. 2019年中国海洋灾害公报[R]. 2020.

    Ministry of Natural Resources and Marine Early Warning and Monitoring Department. Bulletin of China marine disaster 2019[R]. 2020.
    [4] 高歌, 黄大鹏, 赵珊珊. 基于信息扩散方法的中国台风灾害年月尺度风险评估[J]. 气象, 2019, 45(11): 1600–1610. doi: 10.7519/j.issn.1000-0526.2019.11.010.

    GAO Ge, HUANG Dapeng, and ZHAO Shanshan. Annual and monthly risk assessment of typhoon disasters in China based on the information diffusion method[J]. Meteorological Monthly, 2019, 45(11): 1600–1610. doi: 10.7519/j.issn.1000-0526.2019.11.010.
    [5] 张新蕾. 基于多源遥感数据的北太平洋海面风场研究[D]. [硕士论文], 辽宁师范大学, 2019.

    ZHANG Xinlei. Research on the sea surface wind field of the North Pacific Ocean based on multi-source remote sensing data[D]. [Master dissertation], Liaoning Normal University, 2019.
    [6] 林明森, 张有广. 我国海洋动力环境卫星应用现状及发展展望[J]. 卫星应用, 2018(5): 19–23. doi: 10.3969/j.issn.1674-9030.2018.05.006.

    LIN Mingsen and ZHANG Youguang. Current status and development prospects of marine dynamic environment satellite application in China[J]. Satellite Application, 2018(5): 19–23. doi: 10.3969/j.issn.1674-9030.2018.05.006.
    [7] 蒋兴伟, 林明森, 张有广. 中国海洋卫星及应用进展[J]. 遥感学报, 2016, 20(5): 1185–1198. doi: 10.11834/jrs.20166153.

    JIANG Xingwei, LIN Mingsen, and ZHANG Youguang. Progress and prospect of Chinese ocean satellites[J]. Journal of Remote Sensing, 2016, 20(5): 1185–1198. doi: 10.11834/jrs.20166153.
    [8] HALL C D and CORDEY R A. Multistatic scatterometry[C]. International Geoscience and Remote Sensing Symposium, 'Remote Sensing: Moving Toward the 21st Century', Edinburgh, UK, 1988: 561–562. doi: 10.1109/IGARSS.1988.570200.
    [9] GUO Wenfei, DU Hao, CHEONG J W, et al. GNSS-R wind speed retrieval of sea surface based on particle swarm optimization algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 4202414. doi: 10.1109/TGRS.2021.3082916.
    [10] QIN Lingyu and LI Ying. Wind speed retrieval method for shipborne GNSS-R[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1000205. doi: 10.1109/LGRS.2020.3021506.
    [11] RAJABI M, HOSEINI M, NAHAVANDCHI H, et al. Polarimetric GNSS-R sea level monitoring using I/Q interference patterns at different antenna configurations and carrier frequencies[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5801613. doi: 10.1109/TGRS.2021.3123146.
    [12] ZHU Yongchao, TAO Tingye, LI Jiangyang, et al. Spaceborne GNSS-R for sea ice classification using machine learning classifiers[J]. Remote Sensing, 2021, 13(22): 4577. doi: 10.3390/rs13224577.
    [13] ZHU Y, TAO T, ZOU J, et al. Spaceborne GNSS reflectometry for retrieving sea ice concentration using TDS-1 data[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(4): 612–616. doi: 10.1109/LGRS.2020.2982959.
    [14] WANG Nazi, GAO Fan. KONG Yahui, et al. Soil moisture estimation based on GNSS-R using L5 signals from a Quasi-Zenith satellite system[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 2505005. doi: 10.1109/LGRS.2022.3176463.
    [15] RUF C S, GLEASON S, JELENAK Z, et al. The CYGNSS nanosatellite constellation hurricane mission[C]. 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 2012: 214–216. doi: 10.1109/IGARSS.2012.6351600.
    [16] GUO Zhizhou, LIU Baojian, WAN Wei, et al. Soil moisture retrieval using BuFeng-1 A/B based on land surface clustering algorithm[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 4680–4689. doi: 10.1109/JSTARS.2022.3179325.
    [17] YANG Guanglin, BAI Weihua, WANG Jinsong, et al. FY3E GNOS II GNSS reflectometry: Mission review and first results[J]. Remote Sensing, 2022, 14(4): 988. doi: 10.3390/rs14040988.
    [18] ZUFFADA C, ELFOUHAILY T, and LOWE S. Sensitivity analysis of wind vector measurements from ocean reflected GPS signals[J]. Remote Sensing of Environment, 2003, 88(3): 341–350. doi: 10.1016/S0034-4257(03)00175-5.
    [19] GARRISON J L. Anisotropy in reflected GPS measurements of ocean winds[C]. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No. 03CH37477), Toulouse, France, 2003: 4480–4482. doi: 10.1109/IGARSS.2003.1295553.
    [20] VALENCIA E, ZAVOROTNY V U, AKOS D M, et al. Using DDM asymmetry metrics for wind direction retrieval from GPS ocean-scattered signals in airborne experiments[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(7): 3924–3936. doi: 10.1109/TGRS.2013.2278151.
    [21] GUAN Dongliang, PARK H, CAMPS A, et al. Wind direction signatures in GNSS-R observables from space[J]. Remote Sensing, 2018, 10(2): 198. doi: 10.3390/rs10020198.
    [22] WANG Feng, YANG Dongkai, and YANG Lei. Feasibility of wind direction observation using low-altitude global navigation satellite system-reflectometry[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(12): 5063–5075. doi: 10.1109/JSTARS.2018.2877388.
    [23] ZHANG Guodong, YANG Dongkai, YU Yongqing, et al. Wind direction retrieval using spaceborne GNSS-R in nonspecular geometry[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 649–658. doi: 10.1109/JSTARS.2020.2970106.
    [24] KING L S, UNWIN M, RAWLINSON J, et al. Processing of raw GNSS reflectometry data from TDS-1 in a backscattering configuration[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 2916–2924. doi: 10.1109/JSTARS.2020.2997199.
    [25] RICHARDS M A. Fundamentals of Radar Signal Processing[M]. New York: McGraw-Hill Education, 2014: 55.
    [26] ALONSO-ARROYO A, QUEROL J, LOPEZ-MARTINEZ C, et al. SNR and standard deviation of cGNSS-R and iGNSS-R scatterometric measurements[J]. Sensors, 2017, 17(1): 183. doi: 10.3390/s17010183.
    [27] 解学通, 方裕, 陈晓翔, 等. 基于最大似然估计的海面风场反演算法研究[J]. 地理与地理信息科学, 2005, 21(1): 30–33. doi: 10.3969/j.issn.1672-0504.2005.01.009.

    XIE Xuetong, FANG Yu. CHEN Xiaoxiang, et al. Research on Numerical wind vector retrieval algorithm based on maximum likelihood estimation[J]. Geography and Geo-Information Science, 2005, 21(1): 30–33. doi: 10.3969/j.issn.1672-0504.2005.01.009.
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  261
  • HTML全文浏览量:  169
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-22
  • 修回日期:  2023-12-15
  • 网络出版日期:  2023-12-23
  • 刊出日期:  2024-04-24

目录

    /

    返回文章
    返回