高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于高度角随机模型的GNSS外辐射源雷达定位算法

杨东凯 谭传瑞 王峰 李唐

杨东凯, 谭传瑞, 王峰, 李唐. 基于高度角随机模型的GNSS外辐射源雷达定位算法[J]. 电子与信息学报, 2024, 46(4): 1373-1381. doi: 10.11999/JEIT230462
引用本文: 杨东凯, 谭传瑞, 王峰, 李唐. 基于高度角随机模型的GNSS外辐射源雷达定位算法[J]. 电子与信息学报, 2024, 46(4): 1373-1381. doi: 10.11999/JEIT230462
YANG Dongkai, TAN Chuanrui, WANG Feng, LI Tang. Elevation-Dependent Stochastic Localization Algorithm for GNSS-based Passive Radar[J]. Journal of Electronics & Information Technology, 2024, 46(4): 1373-1381. doi: 10.11999/JEIT230462
Citation: YANG Dongkai, TAN Chuanrui, WANG Feng, LI Tang. Elevation-Dependent Stochastic Localization Algorithm for GNSS-based Passive Radar[J]. Journal of Electronics & Information Technology, 2024, 46(4): 1373-1381. doi: 10.11999/JEIT230462

基于高度角随机模型的GNSS外辐射源雷达定位算法

doi: 10.11999/JEIT230462
详细信息
    作者简介:

    杨东凯:男,教授,研究方向为卫星导航应用

    谭传瑞:男,硕士生,研究方向为卫星导航应用

    王峰:男,博士后,研究方向为卫星导航应用

    李唐:男,本科生,研究方向为卫星导航应用

    通讯作者:

    王峰 wangf.19@163.com

  • 中图分类号: TN958.97

Elevation-Dependent Stochastic Localization Algorithm for GNSS-based Passive Radar

  • 摘要: 针对GNSS外辐射源雷达定位时不同卫星对定位的误差贡献不同的问题,提出基于高度角随机模型的定位算法,理论分析目标位置估计量的克拉美罗界和统计特性,并计算卫星位置误差和地面站位置误差对定位误差的影响。仿真结果表明:所提出算法对不同GNSS卫星的直射、反射路径的伪距差测量值误差进行了合理分配,定位性能达到了克拉美罗界,且不会因为选星方案的改变而大幅恶化。对地面站位置误差和卫星位置误差的分析表明:地面站位置的标准差小于10 cm、卫星位置的标准差小于1 km时对定位总误差的贡献可以忽略不计。
  • 图  1  GNSS外辐射源雷达的探测场景

    图  2  目标定位仿真结果

    图  3  不同标准差下的RMSE

    图  4  5000次蒙特卡罗仿真的结果

    图  5  选择不同数量卫星的目标定位结果

    图  6  考察范围

    图  7  ${w_{\max }}$在空间中不同位置的取值

    图  8  卫星位置误差对目标定位的影响

    图  9  ${q_{\max }}$在空间中不同位置的取值

    图  10  地面站位置误差对目标定位的影响

    表  1  目标定位的仿真条件

    编号x(m)y(m)z(m)高度角(°)
    地面站000/
    卫星12899814.6218284781.5812217268.8160.91
    卫星2–17764738.3415083494.9027484289.1871.13
    卫星3–10828315.4920312609.37–3037755.3742.41
    卫星4–1449209.8215222521.4415431127.5373.64
    卫星5–12017255.4421647192.4025857148.5583.56
    卫星6–18426601.6832494825.40–3751263.0044.14
    卫星7–14055816.53–1406462.4318392755.0042.57
    卫星8–12585819.5735077860.61–4631158.4042.44
    卫星9–2312759.2322721092.7128108988.8671.93
    卫星10–32147920.1620112722.76–4037168.8235.58
    下载: 导出CSV

    表  2  空中目标的位置

    名称空中目标
    x(m)166.12
    y(m)–69.15
    z(m)67.10
    下载: 导出CSV

    表  3  目标定位算法对选星方案的敏感性

    卫星数量选星方案的总数RMSE序列的标准差(m)RMSE序列的极差(m)
    高度角随机模型等权随机模型高度角随机模型等权随机模型
    525213.48134.20103.381025.10
    62106.8952.7444.85495.38
    71203.9620.8326.36119.24
    8452.2412.479.2352.37
    下载: 导出CSV
  • [1] GRIFFITHS H D. From a different perspective: Principles, practice and potential of bistatic radar[C]. 2003 Proceedings of the International Conference on Radar, Adelaide, Australia, 2023: 1–7.
    [2] 王文钦, 陈慧, 郑植, 等. 频控阵雷达技术及其应用研究进展[J]. 雷达学报, 2018, 7(2): 153–166. doi: 10.12000/JR18029.

    WANG Wenqin, CHEN Hui, ZHENG Zhi, et al. Advances on frequency diverse array radar and its applications[J]. Journal of Radars, 2018, 7(2): 153–166. doi: 10.12000/JR18029.
    [3] 李刚. 新体制雷达及其关键技术[J]. 电子技术与软件工程, 2019(15): 60–62.

    LI Gang. New system radar and its key technologies[J]. Electronic Technology &Software Engineering, 2019(15): 60–62.
    [4] 戴文瑞, 王锐, 魏巍. 基于5G基站信号的被动雷达无源定位方法分析[J]. 舰船电子工程, 2022, 42(3): 81–83,141. doi: 10.3969/j.issn.1672-9730.2022.03.018.

    DAI Wenrui, WANG Rui, and WEI Wei. Analysis of passive radar passive location method based on 5G base station signal[J]. Ship Electronic Engineering, 2022, 42(3): 81–83,141. doi: 10.3969/j.issn.1672-9730.2022.03.018.
    [5] TIAN Minghui, WANG Yaqing, WANG Lu, et al. Experimental research on an FM broadcast based TNR passive radar system[C]. IET International Radar Conference (IET IRC 2020), 2020: 1330–1336.
    [6] MARTELLI T, CABRERA O, COLONE F, et al. Exploitation of long coherent integration times to improve drone detection in DVB-S based passive radar[C]. 2020 IEEE Radar Conference (RadarConf20), Florence, Italy, 2020: 1–6.
    [7] 苗铎, 杨东凯, 许志超, 等. GNSS外辐射源雷达低慢小目标探测概率[J]. 北京航空航天大学学报, 2023, 49(3): 657–664. doi: 10.13700/j.bh.1001-5965.2021.0271.

    MIAO Duo, YANG Dongkai, XU Zhichao, et al. Low-altitude, slow speed and small target detection probability of passive radar based on GNSS signals[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(3): 657–664. doi: 10.13700/j.bh.1001-5965.2021.0271.
    [8] MA Hui, ANTONIOU M, STOVE A G, et al. Maritime moving target localization using passive GNSS-based multistatic radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(8): 4808–4819. doi: 10.1109/TGRS.2018.2838682.
    [9] NASSO I and SANTI F. A centralized approach for ship target detection and localization with multi-transmitters GNSS-based passive radar[C]. International Conference on Radar Systems (RADAR 2022), Edinburgh, UK, 2022: 202–207.
    [10] 闫攀, 栗强强, 闫会峰. 基于北斗卫星外辐射源的目标直接定位算法[J]. 无线电工程, 2023, 53(2): 410–416. doi: 10.3969/j.issn.1003-3106.2023.02.019.

    YAN Pan, LI Qiangqiang, and YAN Huifeng. Direct position determination of moving target using BeiDou satellite external illuminators[J]. Radio Engineering, 2023, 53(2): 410–416. doi: 10.3969/j.issn.1003-3106.2023.02.019.
    [11] GRONOWSKI K, SAMCZYŃSKI P, STASIAK K, et al. First results of air target detection using single channel passive radar utilizing GPS illumination[C]. 2019 IEEE Radar Conference (RadarConf), Boston, USA, 2019: 1–6.
    [12] 边少锋, 刘一, 纪兵, 等. 北斗三号卫星观测信息高度角相关随机模型统计特性分析[J]. 武汉大学学报:信息科学版, 2022, 47(10): 1615–1624. doi: 10.13203/j.whugis20220021.

    BIAN Shaofeng, LIU Yi, JI Bing, et al. Analysis of statistic testing of elevation-dependent stochastic models of BDS-3 satellite observation[J]. Geomatics and Information Science of Wuhan University, 2022, 47(10): 1615–1624. doi: 10.13203/j.whugis20220021.
    [13] LI Bofeng, LOU Lizhi, and SHEN Yunzhong. GNSS elevation-dependent stochastic modeling and its impacts on the statistic testing[J]. Journal of Surveying Engineering, 2016, 142(2): 04015012. doi: 10.1061/(ASCE)SU.1943-5428.0000156.
    [14] 孙鹏. 几种随机模型对北斗定位精度影响研究[J]. 矿山测量, 2021, 49(3): 94–98. doi: 10.3969/j.issn.1001-358X.2021.03.019.

    SUN Peng. Study on the influence of several stochastic models on Beidou positioning accuracy[J]. Mine Surveying, 2021, 49(3): 94–98. doi: 10.3969/j.issn.1001-358X.2021.03.019.
    [15] AKHMEDOV D S and RASKALIYEV A S. Localization of an air target by means of GNSS-based multistatic radar[J]. AIP Conference Proceedings, 2016, 1759(1): 020127. doi: 10.1063/1.4959741.
    [16] 刘琳. GNSS观测值精度估计及随机模型精化方法研究[D]. 武汉: 武汉大学, 2019.

    LIU Lin. Research on method of GNSS observation precision estimation and stochastic model refinement[D]. [Master dissertation], Wuhan University, 2019.
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  234
  • HTML全文浏览量:  132
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-22
  • 修回日期:  2023-09-01
  • 网络出版日期:  2023-09-05
  • 刊出日期:  2024-04-24

目录

    /

    返回文章
    返回