高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑信息年龄的无人机辅助智能交通系统计算卸载优化

钟伟锋 黄旭民 康嘉文 谢胜利

张浩, 刘兴, GulliverTA, 崔学荣. 基于单基站天线阵列的超宽带定位AOA估计方法[J]. 电子与信息学报, 2013, 35(8): 2024-2028. doi: 10.3724/SP.J.1146.2012.01639
引用本文: 钟伟锋, 黄旭民, 康嘉文, 谢胜利. 考虑信息年龄的无人机辅助智能交通系统计算卸载优化[J]. 电子与信息学报, 2024, 46(3): 934-943. doi: 10.11999/JEIT230459
Zhang Hao, Liu Xing, Gulliver T A, Cui Xue-Rong. AOA Estimation for UWB Positioning Using a Mono-station Antenna Array[J]. Journal of Electronics & Information Technology, 2013, 35(8): 2024-2028. doi: 10.3724/SP.J.1146.2012.01639
Citation: ZHONG Weifeng, HUANG Xumin, KANG Jiawen, XIE Shengli. Optimization of Computation Offloading for UAV-Assisted Intelligent Transportation Systems Considering Age of Information[J]. Journal of Electronics & Information Technology, 2024, 46(3): 934-943. doi: 10.11999/JEIT230459

考虑信息年龄的无人机辅助智能交通系统计算卸载优化

doi: 10.11999/JEIT230459
基金项目: 国家自然科学基金(62003099, 62001125, 62102099),广州市基础与应用基础研究项目(2023A04J1704, 2023A04J0340, 2023A04J1699)
详细信息
    作者简介:

    钟伟锋:男,副教授,研究方向为移动边缘计算、智能电网

    黄旭民:男,副教授,研究方向为移动边缘计算、车联网

    康嘉文:男,教授,研究方向为无线通信网络

    谢胜利:男,教授,研究方向为自适应信号处理、物联网信息技术

    通讯作者:

    黄旭民 huangxumin@gdut.edu.cn

  • 中图分类号: TN926

Optimization of Computation Offloading for UAV-Assisted Intelligent Transportation Systems Considering Age of Information

Funds: The National Natural Science Foundation of China (62003099, 62001125, 62102099), The Guangzhou Basic and Applied Basic Research Project (2023A04J1704, 2023A04J0340, 2023A04J1699)
  • 摘要: 该文考虑无人机(UAV)交通监测与移动边缘计算(MEC)技术结合的智能交通系统。为了保障系统中数据时效性并且降低系统能耗,提出计及信息年龄(AoI)的UAV计算卸载优化方法。首先,建立UAV辅助的MEC系统模型,允许MEC服务器缓存常用的应用程序并为UAV提供计算卸载,以支持UAV执行交通监测任务。通过联合优化UAV任务卸载决策、UAV上下行通信带宽分配以及被卸载任务的计算资源分配,最小化所有UAV与MEC服务器的总能耗,同时满足AoI与资源容量等约束条件。其次,系统能耗最小化问题是混合整数非凸优化问题,因此采用离散化和线性化手段,快速获得问题的近似最优解,并设计离散点生成算法来调节近似误差。最后,仿真结果表明,即使对于大型的非凸问题,所提方法也能够快速得到近似最优解,并且可以在不同的任务场景中满足AoI等约束条件,最大限度降低系统能耗。仿真结果验证了所提方法的有效性。
  • 图  1  智能交通系统示意图

    图  2  不同求解方案下的系统能耗

    图  3  不同能耗系数ϵs与不同信息年龄上限Amax下的系统能耗

    图  4  不同能耗系数ϵs与不同信息年龄上限Amax下在MEC服务器上执行的计算任务数量

    表  1  P2与P1的关系

    P2中的新变量和新函数 与原问题P1的关系
    整数变量zi 用于等价线性化AoI等式(8),见式(18)–式(20)
    连续变量aitLi,aitMi,aieLi,aieMi,airMi 用于定义凸包络,精确松弛5个双线性项aitLi,aitMi,aieLi,aieMi,airMi,见式(21)、式(22)
    连续变量rbi,rMi 用于等价替换1/bi1/fMi,见式(23)–式(27)
    连续变量mi 用于等价松弛式(27),见式(28)
    直线函数l1k,k+1(rMi)和连续变量Fi 用于近似函数1/rMi,见式(33)–式(35)
    直线函数l2k,k+1(rMi) 用于近似函数1/(rMi)2,见式(36)
    直线函数l3k,k+1(rbi)和连续变量Bi 用于近似函数1/rbi,见式(37)、式(38)
    下载: 导出CSV
    算法1 离散点生成算法
     输入:δ, f(r), r[rmin,rmax], r1=rmin, R={r1}, i=1
     输出:R
     1. Repeat
     2.  令rL=ri, rR=rmax, E={rL,rR}
     3.  Repeat
     4.   r=f1(f(rR)f(rL)rRrL)
     5.   Δ=lL,R(r)f(r)
     6.   获得,使得E中第个元素E=rR
     7.   If Δ>δ Then
     8.   rR(E+E1)/2, EE{rR}
     9.   ElseIf Δ<δδ0 Then
     10.   rR(E+E+1)/2, EE{rR}
     11.   EndIf
     12.   对E={E1,E2,}排序,使得E1<E2<
     13.  Until δδ0Δδ
     14.  RR{rR}, ii+1
     15. Until rR=rmax
    下载: 导出CSV

    表  2  不同求解方案的运算时间

    UAV 求解器 本方法
    数量 BNB(1 h) δ=0.05 δ=0.1 δ=0.2
    I=10 11 min 9 s 5 s 4 s
    I=20 1 h 28 s 17 s 10 s
    I=30 1 h 78 s 50 s 31 s
    下载: 导出CSV
  • [1] HU Jinna, CHEN Chen, CAI Lin, et al. UAV-assisted vehicular edge computing for the 6G Internet of vehicles: Architecture, intelligence, and challenges[J]. IEEE Communications Standards Magazine, 2021, 5(2): 12–18. doi: 10.1109/MCOMSTD.001.2000017.
    [2] LIU Jianyu, WU Jing, and LIU Mingyu. UAV monitoring and forecasting model in intelligent traffic oriented applications[J]. Computer Communications, 2020, 153: 499–506. doi: 10.1016/j.comcom.2020.02.009.
    [3] 胡硕, 王洁, 孙妍, 等. 无人机视角下的多车辆跟踪算法研究[J]. 智能系统学报, 2022, 17(4): 798–805. doi: 10.11992/tis.202108014.

    HU Shuo, WANG Jie, SUN Yan, et al. Research on multi-vehicle tracking algorithm from the perspective of UAV[J]. CAAI Transactions on Intelligent Systems, 2022, 17(4): 798–805. doi: 10.11992/tis.202108014.
    [4] JIANG Yingying, MIAO Yiming, ALZAHRANI B, et al. Ultra large-scale crowd monitoring system architecture and design issues[J]. IEEE Internet of Things Journal, 2021, 8(13): 10356–10366. doi: 10.1109/JIOT.2021.3076257.
    [5] 李新民, 尹宝林, 魏李莉, 等. 强化学习无人机通信系统中的信息年龄优化[J]. 电子科技大学学报, 2022, 51(2): 213–218. doi: 10.12178/1001-0548.2021128.

    LI Xinmin, YIN Baolin, WEI Lili, et al. Reinforcement learning-based age of information optimization in UAV-enabled communication system[J]. Journal of University of Electronic Science and Technology of China, 2022, 51(2): 213–218. doi: 10.12178/1001-0548.2021128.
    [6] FENG Jialiang and GONG Jie. Joint detection and computation offloading with age of information in mobile edge networks[J]. IEEE Transactions on Network Science and Engineering, 2023, 10(3): 1417–1430. doi: 10.1109/TNSE.2022.3208857.
    [7] 敬乐天, 贾向东, 曹肖攀, 等. 基于DRL的无人机辅助边缘计算服务质量优化[J]. 信号处理, 2022, 38(6): 1316–1324. doi: 10.16798/j.issn.1003-0530.2022.06.018.

    JING Letian, JIA Xiangdong, CAO Xiaopan, et al. Quality of service optimization in UAV-assisted edge computing based on deep reinforcement learning[J]. Journal of Signal Processing, 2022, 38(6): 1316–1324. doi: 10.16798/j.issn.1003-0530.2022.06.018.
    [8] HUANG Jiwei, GAO Han, WAN Shaohua, et al. AoI-aware energy control and computation offloading for industrial IoT[J]. Future Generation Computer Systems, 2023, 139: 29–37. doi: 10.1016/j.future.2022.09.007.
    [9] DIAO Xianbang, GUAN Xinrong, and CAI Yueming. Joint offloading and trajectory optimization for complex status updates in UAV-assisted Internet of things[J]. IEEE Internet of Things Journal, 2022, 9(23): 23881–23896. doi: 10.1109/JIQT.2022.3188608.
    [10] SUN Mengying, XU Xiaodong, QIN Xiaoqi, et al. AoI-energy-aware UAV-assisted data collection for IoT networks: A deep reinforcement learning method[J]. IEEE Internet of Things Journal, 2021, 8(24): 17275–17289. doi: 10.1109/JIQT.2021.3078701.
    [11] 刘玲珊, 熊轲, 张煜, 等. 信息年龄受限下最小化无人机辅助无线供能网络的能耗: 一种基于DQN的方法[J]. 南京大学学报:自然科学, 2021, 57(5): 847–856. doi: 10.13232/j.cnki.jnju.2021.05.015.

    LIU Lingshan, XIONG Ke, ZHANG Yu, et al. Energy minimization in UAV-assisted wireless powered sensor networks with AoI constraints: A DQN-based approach[J]. Journal of Nanjing University:Natural Science, 2021, 57(5): 847–856. doi: 10.13232/j.cnki.jnju.2021.05.015.
    [12] CHEN Xianfu, WU Celimuge, CHEN Tao, et al. Age of information-aware resource management in UAV-assisted mobile-edge computing systems[C]. 2020 IEEE Global Communications Conference, Taipei, China, 2020: 1–6. doi: 10.1109/GLOBECOM42002.2020.9322632.
    [13] ZHENG Guangyuan, XU Chen, WEN Miaowen, et al. Service caching based aerial cooperative computing and resource allocation in multi-UAV enabled MEC systems[J]. IEEE Transactions on Vehicular Technology, 2022, 71(10): 10934–10947. doi: 10.1109/TVT.2022.3183577.
    [14] ZHOU Ruiting, WU Xiaoyi, TAN Haisheng, et al. Two time-scale joint service caching and task offloading for UAV-assisted mobile edge computing[C]. 2022 IEEE Conference on Computer Communications, London, United Kingdom, 2022: 1189–1198. doi: 10.1109/INFOCOM48880.2022.9796714.
    [15] PENG Haixia and SHEN X S. DDPG-based resource management for MEC/UAV-assisted vehicular networks[C]. The 92nd Vehicular Technology Conference (VTC2020-Fall), Victoria, Canada, 2020: 1–6. doi: 10.1109/VTC2020-Fall49728.2020.9348633.
    [16] WANG Yuntao, CHEN Weiwei, LUAN T H. , et al. Task offloading for post-disaster rescue in unmanned aerial vehicles networks[J]. IEEE/ACM Transactions on Networking, 2022, 30(4): 1525–1539. doi: 10.1109/TNET.2022.3140796.
    [17] JIANG Xu, SHENG Min, ZHAO Nan, et al. Green UAV communications for 6G: A survey[J]. Chinese Journal of Aeronautics, 2022, 35(9): 19–34. doi: 10.1016/j.cja.2021.04.025.
    [18] 刘漳辉, 郑鸿强, 张建山, 等. 多无人机使能移动边缘计算系统中的计算卸载与部署优化[J]. 计算机科学, 2022, 49(6A): 619–627. doi: 10.11896/jsjkx.210600165.

    LIU Zhanghui, ZHENG Hongqiang, ZHANG Jianshan, et al. Computation offloading and deployment optimization in multi-UAV-enabled mobile edge computing systems[J]. Computer Science, 2022, 49(6A): 619–627. doi: 10.11896/jsjkx.210600165.
    [19] HOANG L T, NGUYEN C T, LI Peng, et al. Joint uplink and downlink resource allocation for UAV-enabled MEC networks under user mobility[C]. 2022 IEEE International Conference on Communications Workshops, Seoul, Korea, 2022: 1059–1064. doi: 10.1109/ICCWorkshops53468.2022.9814687.
    [20] EL HABER E, ALAMEDDINE H A, ASSI C, et al. UAV-aided ultra-reliable low-latency computation offloading in future IoT networks[J]. IEEE Transactions on Communications, 2021, 69(10): 6838–6851. doi: 10.1109/TCOMM.2021.309 6559.
    [21] 卢为党, 詹悦者, 花俏枝, 等. 基于无人机无线能量传输的边缘计算系统能耗优化方法研究[J]. 电子与信息学报, 2022, 44(3): 899–905. doi: 10.11999/JEIT211314.

    LU Weidang, ZHAN Yuezhe, HUA Qiaozhi, et al. Energy consumption optimization in UAV wireless power transfer based mobile edge computing system[J]. Journal of Electronics & Information Technology, 2022, 44(3): 899–905. doi: 10.11999/JEIT211314.
    [22] BOUKOUVALA F, MISENER R, and FLOUDAS C A. Global optimization advances in mixed-integer nonlinear programming, MINLP, and constrained derivative-free optimization, CDFO[J]. European Journal of Operational Research, 2016, 252(3): 701–727. doi: 10.1016/j.ejor.2015.12.018.
    [23] MCCORMICK G P. Computability of global solutions to factorable nonconvex programs: Part I—Convex underestimating problems[J]. Mathematical Programming, 1976, 10(1): 147–175. doi: 10.1007/BF01580665.
    [24] ZHONG Weifeng, XIE Shengli, XIE Kan, et al. Cooperative P2P energy trading in active distribution networks: An MILP-based Nash bargaining solution[J]. IEEE Transactions on Smart Grid, 2021, 12(2): 1264–1276. doi: 10.1109/TSG.2020. 3031013.
    [25] BOYD S and VANDENBERGHE L. Convex Optimization[M]. Cambridge: Cambridge University Press, 2004. doi: 10.1017/cbo9780511804441.
  • 期刊类型引用(1)

    1. 张志强,罗积润,张兆传. 一种超宽带双信道速调管输出回路的设计和实验. 电子与信息学报. 2014(05): 1247-1252 . 本站查看

    其他类型引用(4)

  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  760
  • HTML全文浏览量:  574
  • PDF下载量:  126
  • 被引次数: 5
出版历程
  • 收稿日期:  2023-05-19
  • 修回日期:  2023-09-27
  • 网络出版日期:  2023-10-16
  • 刊出日期:  2024-03-27

目录

    /

    返回文章
    返回