高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于深度强化学习的多用户计算卸载优化模型和算法

李志华 余自立

李志华, 余自立. 基于深度强化学习的多用户计算卸载优化模型和算法[J]. 电子与信息学报, 2024, 46(4): 1321-1332. doi: 10.11999/JEIT230445
引用本文: 李志华, 余自立. 基于深度强化学习的多用户计算卸载优化模型和算法[J]. 电子与信息学报, 2024, 46(4): 1321-1332. doi: 10.11999/JEIT230445
LI Zhihua, YU Zili. A Multi-user Computation Offloading Optimization Model and Algorithm Based on Deep Reinforcement Learning[J]. Journal of Electronics & Information Technology, 2024, 46(4): 1321-1332. doi: 10.11999/JEIT230445
Citation: LI Zhihua, YU Zili. A Multi-user Computation Offloading Optimization Model and Algorithm Based on Deep Reinforcement Learning[J]. Journal of Electronics & Information Technology, 2024, 46(4): 1321-1332. doi: 10.11999/JEIT230445

基于深度强化学习的多用户计算卸载优化模型和算法

doi: 10.11999/JEIT230445
基金项目: 工业和信息化部智能制造项目(ZH-XZ-180004),中央高校基本科研业务费专项资金(JUSRP211A41, JUSRP42003)
详细信息
    作者简介:

    李志华:男,教授,硕士生导师,研究方向为边缘计算、云计算与云数据中心理论、大数据挖掘、计算成像、信息安全等

    余自立:男,硕士生,研究方向为边缘计算

    通讯作者:

    李志华 zhli@jiangnan.edu.cn

  • 中图分类号: TN929.5;TP181

A Multi-user Computation Offloading Optimization Model and Algorithm Based on Deep Reinforcement Learning

Funds: The Ministry of Industry and Information Technology Manufacturing Project (ZH-XZ-180004), The Fundamental Research Funds for the Central Universities (JUSRP211A41, JUSRP42003)
  • 摘要: 在移动边缘计算(MEC)密集部署场景中,边缘服务器负载的不确定性容易造成边缘服务器过载,从而导致计算卸载过程中时延和能耗显著增加。针对该问题,该文提出一种多用户计算卸载优化模型和基于深度确定性策略梯度(DDPG)的计算卸载算法。首先,考虑时延和能耗的均衡优化建立效用函数,以最大化系统效用作为优化目标,将计算卸载问题转化为混合整数非线性规划问题。然后,针对该问题状态空间大、动作空间中离散和连续型变量共存,对DDPG深度强化学习算法进行离散化改进,基于此提出一种多用户计算卸载优化方法。最后,使用该方法求解非线性规划问题。仿真实验结果表明,与已有算法相比,所提方法能有效降低边缘服务器过载概率,并具有很好的稳定性。
  • 图  1  边缘网络架构

    图  2  没有对状态进行归一化处理或离散化动作空间时的性能对比

    图  3  不同算法随迭代次数变化时的性能对比

    图  4  不同算法随$s$变化时的性能对比

    图  5  不同UE数量下的时延对比图

    图  6  不同UE数量下的能耗对比图

    图  7  不同算法随UE数量变化时的性能对比

    表  1  变量符号及其含义

    变量符号 含义 变量符号 含义
    ${U_i}$ 用户设备编号 ${P_i}$ ${U_i}$的传输功率
    ${M_j}$ MEC服务器编号 ${\sigma ^2}$ 环境高斯白噪声
    $t$ 时隙编号 ${v_i}$ ${U_i}$的移动速度
    ${f_i}$ ${U_i}$的CPU总频率 ${x_{i,j}}$ ${U_i}$的关联策略
    $\varphi $ ${U_i}$的功率系数 $\lambda _i^t$ 任务$\varOmega _i^t$的卸载率
    $ D_i^t $ 任务大小 $F_i^t$ ${U_i}$分配到的计算资源
    $s$ 单位任务所需计算资源 ${F_{\max }}$ 单个边缘服务器总频率
    ${L_j}$ ${M_j}$的工作负载量
    下载: 导出CSV
    算法1 状态归一化算法
     输入: Unnormalized variables: ${{\boldsymbol{s}}_t} = ({\boldsymbol{p}}_1^t,\cdots ,{\boldsymbol{p}}_N^t,D_1^t,\cdots ,D_N^t,L_1^t,\cdots ,L_M^t)$, Scale factors: $\rho = ({\rho _x},{\rho _y},{\rho _w},{\rho _l})$
     输出: Normalized variables: $ ({{\boldsymbol{p}}'}_1^t,\cdots ,{{\boldsymbol{p}}'}_N^t,{D'}_1^t,\cdots ,{D'}_N^t,{L'}_1^t,\cdots ,{L'}_M^t) $
     (1) ${x'}_i^t = x_i^t*{\rho _x},\forall i$, ${y'}_i^t = y_i^t*{\rho _y},\forall i$, ${D'}_i^t = D_i^t*{\rho _w},\;\forall i$, ${L'}_j^t = L_j^t*{\rho _l},\:\forall j$ //*对状态进行归一化处理
     (2) return ${\hat s_t} = ({{\boldsymbol{p}}'}_1^t,\cdots ,{{\boldsymbol{p}}'}_N^t,{D'}_1^t,\cdots ,{D'}_N^t,{L'}_1^t,\cdots ,{L'}_M^t)$
    下载: 导出CSV
    算法2 动作编码算法
     输入: $a$ //*连续动作
     输出: ${a_{{\text{dis}}}}$ //*对应的离散编码
     (1) ${a_{{\text{num}}}} = K$
     (2) ${a_{\min }} = 0,{a_{\max }} = 1$
     (3) $ {\varDelta _a} = ({a_{\max }} - {a_{\min }})/({a_{{\text{num}}}} - 1) $
     (4) for each $a$ do
     (5) $a' = \left\lfloor {\dfrac{{a - {a_{\min }}}}{{{\varDelta _a}}}} \right\rfloor $ //*动作编码
     (6) ${a_{{\text{dis}}}} = \max (0,\min ({a_{{\text{num}}}} - 1,a'))$
     (7) end for
     (8) return ${a_{{\text{dis}}}}$
    下载: 导出CSV
    算法3 多用户计算卸载优化方法
     输入: Actor learning rate ${\alpha _{{\mathrm{Actor}}}}$, critic learning rate ${\alpha _{{\mathrm{Critic}}}}$, Soft update factor $\tau $.
     输出:$a,Q$ //*卸载决策(任务卸载率、分配的计算资源和关联策略),卸载效用
     (1) $\mu ({s_t}|{\theta _\mu })$$ \leftarrow $${\theta _\mu }$ and $Q({{\boldsymbol{s}}_t},{{\boldsymbol{a}}_t}|{\theta _Q})$$ \leftarrow $${\theta _Q}$, ${\theta '_\mu } \leftarrow {\theta _\mu }$ and ${\theta '_Q} \leftarrow {\theta _Q}$ //*初始化主网络和目标网络
     Initialize the experience replay buffer ${B_m}$ //*初始化经验重放缓冲区暂存经验元组
     (2) for episode=1 to $L$do
     (3)  Initialize system environment
     (4)  for slot=1 to $T$do
     (5)   ${\hat {\boldsymbol{s}}_t} \leftarrow $ SN(${{\boldsymbol{s}}_t},\rho $) //*调用算法1对状态${{\boldsymbol{s}}_t}$预处理
     (6)   Get the action from equation 式(25)
     (7)   ${{\boldsymbol{a}}'_t} \leftarrow $AE(${{\boldsymbol{a}}_t}$) //*调用算法2离散化动作
     (8)   perform action ${{\boldsymbol{a}}'_t}$and observer next state ${{\boldsymbol{s}}_{t + 1}}$, Get reward with equation 式(19)
     (9)   ${\hat {\boldsymbol{s}}_{t + 1}} \leftarrow $SN(${{\boldsymbol{s}}_{t + 1}},\rho $) //*调用算法1对状态${{\boldsymbol{s}}_{t + 1}}$预处理
     (10)   if ${B_m}$is not full then
     (11)    Store transition $({{\boldsymbol{s}}_t},{{\boldsymbol{a}}_t},{r_t},{\hat {\boldsymbol{s}}_{t + 1}})$ in replay buffer ${B_m}$
     (12)   else
     (13)    Randomly sample a mini-batch from ${B_m}$
     (14)    Calculate target value ${y_t}$ with equation 式(21)
     (15)    Use equation 式(20) to minimize the loss and update the ${\theta _Q}$
     (16)    Update the ${\theta _\mu }$ by the sampled policy gradient with equation 式(22)
     (17)    Soft update the $ {\theta '_\mu } $ and ${\theta '_Q}$ according to equation 式(23) and 式(24)
     (18)   end if
     (19) end for
     (20) Use equation 式(15) to get offloading utility $Q$
     (21) end for
     (22) return $a,Q$
    下载: 导出CSV

    表  2  仿真参数设置

    符号 定义
    $B$ 40 信道总带宽(MHz)
    $N$ {5,10,20,30,40} 用户设备数
    $K$ 5 MEC服务器个数
    ${v_i}$ [0,5] ${U_i}$的移动速度(m/s)
    ${P_i}$ 100 ${U_i}$的传输功率(mW)
    ${\sigma ^2}$ –100 环境高斯白噪声(dBm)
    ${f_i}$ 0.5 ${U_i}$的CPU总频率(GHz)
    ${F_{\max }}$ 10 单个MEC服务器总频率(GHz)
    $\varphi $ 10–26 功率系数
    $D_i^t$ (1.5,2) 任务$\varOmega _i^t$的大小(Mbit)
    $s$ 500 所需计算资源(cycle/bit)
    下载: 导出CSV

    表  3  不同${\beta _{\mathrm{t}}}$和${\beta _{\mathrm{e}}}$下的实验结果

    ${\beta _{\rm t}}$和${\beta _{\rm e}}$的取值 时延(s) 能耗(J) 平均卸载效用
    ${\beta _{\rm t}} = 0.1,{\beta _{\rm e}} = 0.9$ 369 394 0.528
    ${\beta _{\rm t}} = 0.2,{\beta _{\rm e}} = 0.8$ 343 412 0.534
    ${\beta _{\rm t}} = 0.3,{\beta _{\rm e}} = 0.7$ 337 431 0.544
    ${\beta _{\rm t}} = 0.4,{\beta _{\rm e}} = 0.6$ 321 441 0.549
    ${\beta _{\rm t}} = 0.5,{\beta _{\rm e}} = 0.5$ 308 456 0.554
    ${\beta _{\rm t}} = 0.6,{\beta _{\rm e}} = 0.4$ 293 464 0.575
    ${\beta _{\rm t}} = 0.7,{\beta _{\rm e}} = 0.3$ 277 479 0.578
    ${\beta _{\rm t}} = 0.8,{\beta _{\rm e}} = 0.2$ 256 488 0.613
    ${\beta _{\rm t}} = 0.9,{\beta _{\rm e}} = 0.1$ 245 511 0.628
    下载: 导出CSV
  • [1] ZHOU Zhi, CHEN Xu, LI En, et al. Edge intelligence: Paving the last mile of artificial intelligence with edge computing[J]. Proceedings of the IEEE, 2019, 107(8): 1738–1762. doi: 10.1109/JPROC.2019.2918951.
    [2] GERARDS M E T, HURINK J L, and KUPER J. On the interplay between global DVFS and scheduling tasks with precedence constraints[J]. IEEE Transactions on Computers, 2015, 64(6): 1742–1754. doi: 10.1109/TC.2014.2345410.
    [3] SADATDIYNOV K, CUI Laizhong, ZHANG Lei, et al. A review of optimization methods for computation offloading in edge computing networks[J]. Digital Communications and Networks, 2023, 9(2): 450–461. doi: 10.1016/j.dcan.2022.03.003.
    [4] SUN Jiannan, GU Qing, ZHENG Tao, et al. Joint optimization of computation offloading and task scheduling in vehicular edge computing networks[J]. IEEE Access, 2020, 8: 10466–10477. doi: 10.1109/ACCESS.2020.2965620.
    [5] LIU Hui, NIU Zhaocheng, DU Junzhao, et al. Genetic algorithm for delay efficient computation offloading in dispersed computing[J]. Ad Hoc Networks, 2023, 142: 103109. doi: 10.1016/j.adhoc.2023.103109.
    [6] ALAMEDDINE H A, SHARAFEDDINE S, SEBBAH S, et al. Dynamic task offloading and scheduling for low-latency IoT services in multi-access edge computing[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(3): 668–682. doi: 10.1109/JSAC.2019.2894306.
    [7] BI Suzhi, HUANG Liang, and ZHANG Y J A. Joint optimization of service caching placement and computation offloading in mobile edge computing systems[J]. IEEE Transactions on Wireless Communications, 2020, 19(7): 4947–4963. doi: 10.1109/TWC.2020.2988386.
    [8] YI Changyan, CAI Jun, and SU Zhou. A multi-user mobile computation offloading and transmission scheduling mechanism for delay-sensitive applications[J]. IEEE Transactions on Mobile Computing, 2020, 19(1): 29–43. doi: 10.1109/TMC.2019.2891736.
    [9] MITSIS G, TSIROPOULOU E E, and PAPAVASSILIOU S. Price and risk awareness for data offloading decision-making in edge computing systems[J]. IEEE Systems Journal, 2022, 16(4): 6546–6557. doi: 10.1109/JSYST.2022.3188997.
    [10] ZHANG Kaiyuan, GUI Xiaolin, REN Dewang, et al. Optimal pricing-based computation offloading and resource allocation for blockchain-enabled beyond 5G networks[J]. Computer Networks, 2022, 203: 108674. doi: 10.1016/j.comnet.2021.108674.
    [11] TONG Zhao, DENG Xin, MEI Jing, et al. Stackelberg game-based task offloading and pricing with computing capacity constraint in mobile edge computing[J]. Journal of Systems Architecture, 2023, 137: 102847. doi: 10.1016/j.sysarc.2023.102847.
    [12] 张祥俊, 伍卫国, 张弛, 等. 面向移动边缘计算网络的高能效计算卸载算法[J]. 软件学报, 2023, 34(2): 849–867. doi: 10.13328/j.cnki.jos.006417.

    ZHANG Xiangjun, WU Weiguo, ZHANG Chi, et al. Energy-efficient computing offloading algorithm for mobile edge computing network[J]. Journal of Software, 2023, 34(2): 849–867. doi: 10.13328/j.cnki.jos.006417.
    [13] YAO Liang, XU Xiaolong, BILAL M, et al. Dynamic edge computation offloading for internet of vehicles with deep reinforcement learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(11): 12991–12999. doi: 10.1109/TITS.2022.3178759.
    [14] SADIKI A, BENTAHAR J, DSSOULI R, et al. Deep reinforcement learning for the computation offloading in MIMO-based Edge Computing[J]. Ad Hoc Networks, 2023, 141: 103080. doi: 10.1016/j.adhoc.2022.103080.
    [15] TANG Ming and WONG V W S. Deep reinforcement learning for task offloading in mobile edge computing systems[J]. IEEE Transactions on Mobile Computing, 2022, 21(6): 1985–1997. doi: 10.1109/TMC.2020.3036871.
    [16] CHENG Nan, LYU Feng, QUAN Wei, et al. Space/aerial-assisted computing offloading for IoT applications: A learning-based approach[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(5): 1117–1129. doi: 10.1109/JSAC.2019.2906789.
    [17] ZHOU Huan, JIANG Kai, LIU Xuxun, et al. Deep reinforcement learning for energy-efficient computation offloading in mobile-edge computing[J]. IEEE Internet of Things Journal, 2022, 9(2): 1517–1530. doi: 10.1109/JIOT.2021.3091142.
    [18] WANG Yunpeng, FANG Weiwei, DING Yi, et al. Computation offloading optimization for UAV-assisted mobile edge computing: A deep deterministic policy gradient approach[J]. Wireless Networks, 2021, 27(4): 2991–3006. doi: 10.1007/s11276-021-02632-z.
    [19] ALE L, ZHANG Ning, FANG Xiaojie, et al. Delay-aware and energy-efficient computation offloading in mobile-edge computing using deep reinforcement learning[J]. IEEE Transactions on Cognitive Communications and Networking, 2021, 7(3): 881–892. doi: 10.1109/TCCN.2021.3066619.
    [20] DAI Yueyue, XU Du, ZHANG Ke, et al. Deep reinforcement learning for edge computing and resource allocation in 5G beyond[C]. The IEEE 19th International Conference on Communication Technology, Xian, China, 2019: 866–870. doi: 10.1109/ICCT46805.2019.8947146.
    [21] 3GPP. TR 36.814 v9.0. 0. Further advancements for E-UTRA physical layer aspects[S]. 2010.
    [22] WANG Yanting, SHENG Min, WANG Xijun, et al. Mobile-edge computing: Partial computation offloading using dynamic voltage scaling[J]. IEEE Transactions on Communications, 2016, 64(10): 4268–4282. doi: 10.1109/TCOMM.2016.2599530.
    [23] ZHANG Ke, MAO Yuming, LENG Supeng, et al. Energy-efficient offloading for mobile edge computing in 5G heterogeneous networks[J]. IEEE Access, 2016, 4: 5896–5907. doi: 10.1109/ACCESS.2016.2597169.
    [24] ZHANG Lianhong, ZHOU Wenqi, XIA Junjuan, et al. DQN-based mobile edge computing for smart Internet of vehicle[J]. EURASIP Journal on Advances in Signal Processing, 2022, 2022(1): 45. doi: 10.1186/s13634-022-00876-1.
    [25] WANG Jin, HU Jia, MIN Geyong, et al. Dependent task offloading for edge computing based on deep reinforcement learning[J]. IEEE Transactions on Computers, 2022, 71(10): 2449–2461. doi: 10.1109/TC.2021.3131040.
    [26] SUTTON R S and BARTO A G. Reinforcement Learning: An Introduction[M]. 2nd ed. Cambridge: A Bradford Book, 2018: 47–50.
    [27] LIU Y C and HUANG Chiyu. DDPG-based adaptive robust tracking control for aerial manipulators with decoupling approach[J]. IEEE Transactions on Cybernetics, 2022, 52(8): 8258–8271. doi: 10.1109/TCYB.2021.3049555.
    [28] HU Shihong and LI Guanghui. Dynamic request scheduling optimization in mobile edge computing for IoT applications[J]. IEEE Internet of Things Journal, 2020, 7(2): 1426–1437. doi: 10.1109/JIOT.2019.2955311.
  • 加载中
图(7) / 表(6)
计量
  • 文章访问数:  718
  • HTML全文浏览量:  180
  • PDF下载量:  152
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-18
  • 修回日期:  2023-11-03
  • 网络出版日期:  2023-11-14
  • 刊出日期:  2024-04-24

目录

    /

    返回文章
    返回