高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多LED可见光定位通信一体化稳健功率分配

杨瑞鑫 张冠杰 马帅 柴进晋 徐刚 李世银

杨瑞鑫, 张冠杰, 马帅, 柴进晋, 徐刚, 李世银. 多LED可见光定位通信一体化稳健功率分配[J]. 电子与信息学报, 2024, 46(4): 1186-1195. doi: 10.11999/JEIT230406
引用本文: 杨瑞鑫, 张冠杰, 马帅, 柴进晋, 徐刚, 李世银. 多LED可见光定位通信一体化稳健功率分配[J]. 电子与信息学报, 2024, 46(4): 1186-1195. doi: 10.11999/JEIT230406
YANG Ruixin, ZHANG Guanjie, MA Shuai, CHAI Jinjin, XU Gang, LI Shiyin. Robust Power Allocation for Multi-LED Integrated Visible Light Positioning and Communication[J]. Journal of Electronics & Information Technology, 2024, 46(4): 1186-1195. doi: 10.11999/JEIT230406
Citation: YANG Ruixin, ZHANG Guanjie, MA Shuai, CHAI Jinjin, XU Gang, LI Shiyin. Robust Power Allocation for Multi-LED Integrated Visible Light Positioning and Communication[J]. Journal of Electronics & Information Technology, 2024, 46(4): 1186-1195. doi: 10.11999/JEIT230406

多LED可见光定位通信一体化稳健功率分配

doi: 10.11999/JEIT230406
基金项目: 国家自然科学基金(61771474),中国矿业大学未来科学家计划(2022WLKXJ016),江苏省研究生科研与实践创新计划(KYCX22_2549)
详细信息
    作者简介:

    杨瑞鑫:男,博士生,研究方向为无线通信、可见光通信

    张冠杰:男,硕士生,研究方向为无线通信、语义通信

    马帅:男,副教授,研究方向为无线通信、可见光通信、语义通信

    柴进晋:女,讲师,研究方向为密码学、编码理论、OFDM

    徐刚:男,副教授,研究方向为雷达成像技术、遥感图像处理、稀疏信号处理、统计机器学习、人工智能

    李世银:男,教授,研究方向为煤矿信息化、移动目标定位

    通讯作者:

    李世银 lishiyin@cumt.edu.cn

  • 中图分类号: TN929.1

Robust Power Allocation for Multi-LED Integrated Visible Light Positioning and Communication

Funds: The National Natural Science Foundation of China (61771474), The Graduate Innovation Program of China University of Mining and Technology (2022WLKXJ016), The Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX22_2549)
  • 摘要: 为了实现可见光定位(VLP)与可见光通信(VLC)一体化信号传输,保证稳健通信和有效定位,该文提出一种基于频分复用(FDM)的可见光定位通信一体化(VLPC)信号传输方案,并设计了一种多LED VLPC稳健功率分配方案。首先提出了一种基于频分复用的VLPC传输方案,实现两种信号一体化传输,频谱资源独立分配,从而降低传输时延,提高定位实时性;然后基于定位结果进行可见光信道估计,揭示了信道估计误差、通信速率与实际定位误差之间耦合关系与统计特性;更进一步,基于所得到的耦合关系,研究了多LED VLPC联合功率分配问题,从而最小化定位误差克拉默-拉奥下界(CRLB),并满足功率约束和通信速率中断概率约束,并利用半正定松弛、最差情况条件风险值和连续凸近似等方法,将难以求解的非凸问题转化为一系列凸半正定规划问题进行迭代求解,并获得高质量可行解;最后,经过数值仿真验证,所提出的方案能够同时实现稳健通信和有效定位。稳健传输速率超过350 Mbit/s,并且当最小速率门限为200 Mbit/s,最大中断概率门限为0.01时,在直射路径加散射路径场景中,可以实现厘米级定位。
  • 图  1  多LED VLPC系统模型与信号传输框架

    图  2  UE和LED位置示意图

    图  3  通信速率累积分布函数($\mathcal{M} = \left\{ {1,2,3} \right\}$, r=350 Mbit/s)

    图  4  通信速率累积分布函数($\mathcal{M} = \left\{ {1,2,3,4,5,6} \right\}$, r=350 Mbit/s)

    图  5  定位RMSE累积分布函数($\mathcal{M} = \left\{ {1,2,3} \right\}$, r=200 Mbit/s)

    图  6  定位RMSE累积分布函数($ \mathcal{M} = \left\{ {1,2,3,4,5,6} \right\} $, r=200 Mbit/s)

    算法 1 基于CVaR和SCA的多LED VLPC稳健功率分配方法
    输入:迭代终止条件$ ϵ\ge 0 $,速率门限$r$和中断概率${P_{{\text{out}}}}$,选择功率分配$ {\mathbf{P}}_{\text{p}}^{\left( 0 \right)} $和${\mathbf{W}}_{\text{c}}^{\left( 0 \right)}$,$k = 0$;
    (1) 令$k = k + 1$, $ {{\mathbf{p}}_{{\text{p}},0}} = {\mathbf{P}}_{\text{p}}^{\left( {k - 1} \right)} $, ${{\mathbf{W}}_{{\text{c,0}}}} = {\mathbf{W}}_{\text{c}}^{\left( {k - 1} \right)}$,求解问题式(28),得到最优解$ {\mathbf{P}}_{\text{p}}^{\left( k \right)} $和${\mathbf{W}}_{\text{c}}^{\left( k \right)}$;
    (2) 如果$\left|\text{Tr}\left({{\boldsymbol{J}}}_{{\boldsymbol{u}}}^{-1}\left({{\boldsymbol{P}}}_{\text{p} }^{\left(k\right)}\right)\right)-\text{Tr}\left({{\boldsymbol{J}}}_{{\boldsymbol{u}}}^{-1}\left({{\boldsymbol{P}}}_{\text{p} }^{\left(k-1\right)}\right)\right)\right|\le \epsilon$,则循环结束,否则返回步骤(1);
    输出:最优功率分配${{\mathbf{w}}_{\text{c}}}$与${{\mathbf{P}}_{\text{p}}}$。
    下载: 导出CSV

    表  1  仿真参数

    视场角ψFOV半功率角φ1/2PD物理面积AR光学前端增益${\eta _{\rm{l}} },{\eta _{\text{c} } }$通信信号带宽Bc定位信号长度Tp噪声功率谱密度N0
    180°60°1 cm2140 MHz0.1 μs1.336×10–22 A2/Hz
    下载: 导出CSV
  • [1] IMT-2030(6G)推进组. 6G典型场景和关键能力[R]. 2022.

    IMT-2030(6G) Promotion Group. 6G typical scenarios and key capabilities[R]. 2022.
    [2] SAAD W, BENNIS M, and CHEN Mingzhe. A vision of 6G wireless systems: Applications, trends, technologies, and open research problems[J]. IEEE Network, 2020, 34(3): 134–142. doi: 10.1109/MNET.001.1900287.
    [3] 全球6G技术大会. 通感一体化系统架构与关键技术[R]. 2023.

    Global 6G Conference. System arrchitecture and key technologies of integrated sensing and communication[R]. 2023.
    [4] MATHEUS L E M, VIEIRA A B, VIEIRA L F M, et al. Visible light communication: Concepts, applications and challenges[J]. IEEE Communications Surveys &Tutorials, 2019, 21(4): 3204–3237. doi: 10.1109/COMST.2019.2913348.
    [5] MEMEDI A and DRESSLER F. Vehicular visible light communications: A survey[J]. IEEE Communications Surveys &Tutorials, 2021, 23(1): 161–181. doi: 10.1109/COMST.2020.3034224.
    [6] KOMINE T and NAKAGAWA M. Fundamental analysis for visible-light communication system using LED lights[J]. IEEE Transactions on Consumer Electronics, 2004, 50(1): 100–107. doi: 10.1109/TCE.2004.1277847.
    [7] LI Doupeng, GONG Chen, and XU Zhengyuan. A RSSI-based indoor visible light positioning approach[C]. 2016 10th International Symposium on Communication Systems, Networks and Digital Signal Processing, Prague, Czech Republic, 2016,
    [8] STEENDAM H, WANG T Q, and ARMSTRONG J. Theoretical lower bound for indoor visible light positioning using received signal strength measurements and an aperture-based receiver[J]. Journal of Lightwave Technology, 2017, 35(2): 309–319. doi: 10.1109/JLT.2016.2645603.
    [9] LIN Bangjiang, TANG Xuan, GHASSEMLOOY Z, et al. Experimental demonstration of an indoor VLC positioning system based on OFDMA[J]. IEEE Photonics Journal, 2017, 9(2): 7902209. doi: 10.1109/JPHOT.2017.2672038.
    [10] XU Yitong, WANG Zixiong, LIU Peixi, et al. Accuracy analysis and improvement of visible light positioning based on VLC system using orthogonal frequency division multiple access[J]. Optics Express, 2017, 25(26): 32618–32630. doi: 10.1364/OE.25.032618.
    [11] YANG Helin, CHEN Chen, ZHONG Wende, et al. Demonstration of a quasi-gapless integrated visible light communication and positioning system[J]. IEEE Photonics Technology Letters, 2018, 30(23): 2001–2004. doi: 10.1109/LPT.2018.2874311.
    [12] CHEN Danyang, FAN Kai, WANG Jianping, et al. Integrated visible light communication and positioning CDMA system employing modified ZCZ and Walsh code[J]. Optics Express, 2022, 30(22): 40455–40469. doi: 10.1364/OE.474687.
    [13] SHI Lina, BÉCHADERGUE B, CHASSAGNE L, et al. Joint visible light sensing and communication using m-CAP modulation[J]. IEEE Transactions on Broadcasting, 2023, 69(1): 276–288. doi: 10.1109/TBC.2022.3201649.
    [14] JIN Jianli, LU Huimin, WANG Jianping, et al. Adaptive feedback threshold based demodulation for mobile visible light communication and positioning integrated system[J]. Optics Express, 2022, 30(8): 13331–13344. doi: 10.1364/OE.456076.
    [15] YANG Helin, ZHONG Wende, CHEN Chen, et al. QoS-driven optimized design-based integrated visible light communication and positioning for indoor IoT networks[J]. IEEE Internet of Things Journal, 2020, 7(1): 269–283. doi: 10.1109/JIOT.2019.2951396.
    [16] YANG Helin, ZHONG Wende, CHEN Chen, et al. Coordinated resource allocation-based integrated visible light communication and positioning systems for indoor IoT[J]. IEEE Transactions on Wireless Communications, 2020, 19(7): 4671–4684. doi: 10.1109/TWC.2020.2986109.
    [17] YANG Helin, DU Pengfei, ZHONG Wende, et al. Reinforcement learning-based intelligent resource allocation for integrated VLCP systems[J]. IEEE Wireless Communications Letters, 2019, 8(4): 1204–1207. doi: 10.1109/LWC.2019.2911682.
    [18] 马帅, 李兵, 盛海鸿, 等. 基于深度强化学习的可见光定位通信一体化功率分配研究[J]. 通信学报, 2022, 43(8): 121–130. doi: 10.11959/j.issn.1000-436x.2022163.

    MA Shuai, LI Bing, SHENG Haihong, et al. Research on power allocation of integrated VLPC based on deep reinforcement learning[J]. Journal on Communications, 2022, 43(8): 121–130. doi: 10.11959/j.issn.1000-436x.2022163.
    [19] MA Shuai, YANG Ruixin, LI Bing, et al. Optimal power allocation for integrated visible light positioning and communication system with a single LED-lamp[J]. IEEE Transactions on Communications, 2022, 70(10): 6734–6747. doi: 10.1109/TCOMM.2022.3204659.
    [20] KAHN J M and BARRY J R. Wireless infrared communications[J]. Proceedings of the IEEE, 1997, 85(2): 265–298. doi: 10.1109/5.554222.
    [21] FATH T and HAAS H. Performance comparison of MIMO techniques for optical wireless communications in indoor environments[J]. IEEE Transactions on Communications, 2013, 61(2): 733–742. doi: 10.1109/TCOMM.2012.120512.110578.
    [22] WANG T Q, SEKERCIOGLU Y A, and ARMSTRONG J. Analysis of an optical wireless receiver using a hemispherical lens with application in MIMO visible light communications[J]. Journal of Lightwave Technology, 2013, 31(11): 1744–1754. doi: 10.1109/JLT.2013.2257685.
    [23] 马帅, 秦莉莉, 李兵, 等. 可见光与射频聚合系统稳健波束成形设计[J]. 电子与信息学报, 2022, 44(8): 2659–2665. doi: 10.11999/JEIT220142.

    MA Shuai, QIN Lili, LI Bing, et al. Robust beamforming design for aggregated visible light communication and radio frequency systems[J]. Journal of Electronics &Information Technology, 2022, 44(8): 2659–2665. doi: 10.11999/JEIT220142.
    [24] PLETS D, ERYILDIRIM A, BASTIAENS S, et al. A performance comparison of different cost functions for RSS-based visible light positioning under the presence of reflections[C]. The 4th ACM Workshop on Visible Light Communication Systems, Snowbird, USA, 2017.
    [25] CENGIZ K. Comprehensive analysis on least-squares lateration for indoor positioning systems[J]. IEEE Internet of Things Journal, 2021, 8(4): 2842–2856. doi: 10.1109/JIOT.2020.3020888.
    [26] KAY S M, 罗鹏飞, 张文明, 刘忠, 等译. 统计信号处理基础——估计与检测理论(卷Ⅰ、卷Ⅱ合集)[M]. 北京: 电子工业出版社, 2014: 22–27.

    KAY S M, LUO Pengfei, ZHANG Wenming, LIU Zhong, et al. translation. Fundamentals of Statistical Signal Processing, Volume Ⅰ: Estimation Theory, Volume Ⅱ: Detection Theory[M]. Beijing: Publishing House of Electronics Industry, 2014: 22–27.
    [27] WANG Tao, LEUS G, and HUANG Li. Ranging energy optimization for robust sensor positioning based on semidefinite programming[J]. IEEE Transactions on Signal Processing, 2009, 57(12): 4777–4787. doi: 10.1109/TSP.2009.2028211.
    [28] LOTTICI V, D'ANDREA A, and MENGALI U. Channel estimation for ultra-wideband communications[J]. IEEE Journal on Selected Areas in Communications, 2002, 20(9): 1638–1645. doi: 10.1109/JSAC.2002.805053.
    [29] KESKIN M F, SEZER A D, and GEZICI S. Optimal and robust power allocation for visible light positioning systems under illumination constraints[J]. IEEE Transactions on Communications, 2019, 67(1): 527–542. doi: 10.1109/TCOMM.2018.2866849.
    [30] ZYMLER S, KUHN D, and RUSTEM B. Distributionally robust joint chance constraints with second-order moment information[J]. Mathematical Programming, 2013, 137(1/2): 167–198. doi: 10.1007/s10107-011-0494-7.
    [31] ZHANG Yu, LI Bin, GAO Feifei, et al. A robust design for ultra reliable ambient backscatter communication systems[J]. IEEE Internet of Things Journal, 2019, 6(5): 8989–8999. doi: 10.1109/JIOT.2019.2925843.
    [32] LUO Zhiquan, MA W K, SO A M C, et al. Semidefinite relaxation of quadratic optimization problems[J]. IEEE Signal Processing Magazine, 2010, 27(3): 20–34. doi: 10.1109/MSP.2010.936019.
    [33] GRANT M and BOYD S. CVX: Matlab software for disciplined convex programming, version 2.2[EB/OL]. http://cvxr.com/cvx, 2020.
    [34] ZHOU Rui and PALOMAR D P. Solving high-order portfolios via successive convex approximation algorithms[J]. IEEE Transactions on Signal Processing, 2021, 69: 892–904. doi: 10.1109/TSP.2021.3051369.
    [35] JUNGNICKEL V, POHL V, NONNIG S, et al. A physical model of the wireless infrared communication channel[J]. IEEE Journal on Selected Areas in Communications, 2002, 20(3): 631–640. doi: 10.1109/49.995522.
    [36] MA Shuai, LI Hang, HE Yang, et al. Capacity bounds and interference management for interference channel in visible light communication networks[J]. IEEE Transactions on Wireless Communications, 2019, 18(1): 182–193. doi: 10.1109/TWC.2018.2878585.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  646
  • HTML全文浏览量:  223
  • PDF下载量:  108
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-12
  • 修回日期:  2023-07-05
  • 网络出版日期:  2023-07-13
  • 刊出日期:  2024-04-24

目录

    /

    返回文章
    返回