高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于RIS的宽带毫米波SISO定位方法

孙俊倡 谷荣妍 马帅 柴进晋 李世银

孙俊倡, 谷荣妍, 马帅, 柴进晋, 李世银. 一种基于RIS的宽带毫米波SISO定位方法[J]. 电子与信息学报, 2024, 46(4): 1240-1246. doi: 10.11999/JEIT230401
引用本文: 孙俊倡, 谷荣妍, 马帅, 柴进晋, 李世银. 一种基于RIS的宽带毫米波SISO定位方法[J]. 电子与信息学报, 2024, 46(4): 1240-1246. doi: 10.11999/JEIT230401
SUN Junchang, GU Rongyan, MA Shuai, CHAI Jinjin, LI Shiyin. An RIS assisted Wideband Millimeter Wave SISO-Based Positioning Method[J]. Journal of Electronics & Information Technology, 2024, 46(4): 1240-1246. doi: 10.11999/JEIT230401
Citation: SUN Junchang, GU Rongyan, MA Shuai, CHAI Jinjin, LI Shiyin. An RIS assisted Wideband Millimeter Wave SISO-Based Positioning Method[J]. Journal of Electronics & Information Technology, 2024, 46(4): 1240-1246. doi: 10.11999/JEIT230401

一种基于RIS的宽带毫米波SISO定位方法

doi: 10.11999/JEIT230401
基金项目: 国家自然科学基金(61771474, 62371451)
详细信息
    作者简介:

    孙俊倡:男,博士生,研究方向为毫米波定位、可重构智能超表面等

    谷荣妍:女,硕士生,研究方向为语义通信、信息论等

    马帅:男,副研究员,博士生导师,研究方向为语义通信、通信定位一体化、信息论等

    柴进晋:男,讲师,研究方向为无线定位、OFDM系统、编码技术等

    李世银:男,教授,博士生导师,研究方向为煤矿信息化、移动目标定位等

    通讯作者:

    李世银 lishiyin@cumt.edu.cn

  • 中图分类号: TN929.5

An RIS assisted Wideband Millimeter Wave SISO-Based Positioning Method

Funds: The National Natural Science Foundation of China (61771474, 62371451)
  • 摘要: 针对毫米波定位过程中空间宽带效应产生的影响,该文基于可重构智能超表面(RIS)和单输入单输出(SISO)毫米波系统提出一种新颖的3维(3D)定位估计方法。首先,通过设计RIS相位,利用快速傅里叶逆变换(IFFT)粗略地估计直射路径的视距(LoS)时延、RIS路径的虚拟视距(VLoS)时延以及RIS与用户之间的出发角(AoD)等信道参数。然后,利用拟牛顿法修正上述参数进而估计用户的位置坐标。通过仿真模拟对比了所提宽带估计方法和传统的窄带估计方法的定位性能,结果表明,通过考虑空间宽带效应,带宽为240 MHz时定位精度大约可提高10%,随着带宽增大超过800 MHz时定位性能可提高超过20%。
  • 图  1  RIS辅助的毫米波SISO定位系统模型

    图  2  定位估算误差随接收SNR的变化趋势

    图  3  定位估算误差随带宽的变化趋势

    算法1 基于RIS的毫米波SISO系统定位算法
     输入:接收信号${\mathbf{Y}}$
     输出:用户估计位置${\mathbf{\hat u}}$
     1:定义矩阵$ {{\mathbf{Z}}_{\text{b}}} $并利用IFFT估计${\hat k_{\text{b}}}$
     2:粗估计LoS时延${\tilde \tau _{\text{b}}}$
     3:利用拟牛顿法准确估计LoS时延${\hat \tau _{\text{b}}}$
     4:估计LoS复信道增益$ {\hat \rho _{\text{b}}} $
     5:定义矩阵$ {{\mathbf{Z}}_{\text{r}}} $并利用IFFT估计${\hat k_{\text{r}}}$
     6:粗估计VLoS时延$ {\tilde \tau _{\text{r}}} $
     7:利用拟牛顿法准确估计VLoS时延${\hat \tau _{\text{r}}}$
     8:粗估计RIS和用户之间的AoD$ {\tilde {\boldsymbol{\phi}} } $
     9:利用拟牛顿法准确估计AoD$ {\hat {\boldsymbol{\phi}} } $
     10:估计RIS和用户之间的距离$ \hat d $
     11:估计用户位置${\mathbf{\hat u}}$
    下载: 导出CSV

    表  1  仿真参数设置

    参数
    频率${f_{\text{c}}}$30 GHz
    RIS尺寸大小$L$$64 \times 64$
    子载波间距${\varDelta _f}$240 kHz
    符号数目$T$120
    RIS相位束数目$K$12
    噪声PSD${N_0}$$ - 174{\text{ dBm/Hz}}$
    噪声因子8 dB
    IFFT维度${N_{\text{F}}}$4096
    基站位置$ {\boldsymbol{p}} $$\left( {2,2, - 7} \right)$
    RIS位置${\boldsymbol{r}}$$\left( {0,0,0} \right)$
    用户位置$ {\boldsymbol{u}} $$\left( { - {\text{5/}}\sqrt {\text{2}} ,{\text{5/}}\sqrt {\text{2}} , - 10} \right)$
    下载: 导出CSV
  • [1] 王丹阳, 薛秀珍, 魏伟, 等. 基于多天线信号合成的优化到达时间差定位算法[J]. 光学技术, 2022, 48(5): 536–540. doi: 10.13741/j.cnki.11-1879/o4.2022.05.004.

    WANG Danyang, XUE Xiuzhen, WEI Wei, et al. Optimal the time difference of arrival location algorithm localization algorithm based on multi-antenna signal combining[J]. Optical Technique, 2022, 48(5): 536–540. doi: 10.13741/j.cnki.11-1879/o4.2022.05.004.
    [2] 郭文飞, 齐书峰, 邓玥, 等. 融合TOA/AOD的5G/SINS紧组合导航定位算法分析[J]. 测绘学报, 2023, 52(3): 367–374. doi: 10.11947/j.AGCS.2023.20210555.

    GUO Wenfei, QI Shufeng, DENG Yue, et al. Analysis of 5G/SINS tightly coupled navigation algorithm with TOA/AOD[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(3): 367–374. doi: 10.11947/j.AGCS.2023.20210555.
    [3] PALACIOS J, BIELSA G, CASARI P, et al. Single- and multiple-access point indoor localization for millimeter-wave networks[J]. IEEE Transactions on Wireless Communications, 2019, 18(3): 1927–1942. doi: 10.1109/TWC.2019.2899313.
    [4] TALVITIE J, KOIVISTO M, LEVANEN T, et al. High-accuracy joint position and orientation estimation in sparse 5G mmWave channel[C]. 2019 IEEE International Conference on Communications, Shanghai, China, 2019: 1–7.
    [5] SHAHMANSOORI A, UGUEN B, DESTINO G, et al. Tracking position and orientation through millimeter wave lens MIMO in 5G systems[J]. IEEE Signal Processing Letters, 2019, 26(8): 1222–1226. doi: 10.1109/LSP.2019.2925969.
    [6] SHAHMANSOORI A, GARCIA G E, DESTINO G, et al. Position and orientation estimation through millimeter-wave MIMO in 5G systems[J]. IEEE Transactions on Wireless Communications, 2018, 17(3): 1822–1835. doi: 10.1109/TWC.2017.2785788.
    [7] MENDRZIK R, WYMEERSCH H, BAUCH G, et al. Harnessing NLOS components for position and orientation estimation in 5G millimeter wave MIMO[J]. IEEE Transactions on Wireless Communications, 2019, 18(1): 93–107. doi: 10.1109/TWC.2018.2877615.
    [8] FASCISTA A, COLUCCIA A, WYMEERSCH H, et al. Millimeter-wave downlink positioning with a single-antenna receiver[J]. IEEE Transactions on Wireless Communications, 2019, 18(9): 4479–4490. doi: 10.1109/TWC.2019.2925618.
    [9] LIN Zhipeng, LV Tiejun, and MATHIOPOULOS P T. 3-D indoor positioning for millimeter-wave massive MIMO systems[J]. IEEE Transactions on Communications, 2018, 66(6): 2472–2486. doi: 10.1109/TCOMM.2018.2797993.
    [10] GARCIA N, WYMEERSCH H, LARSSON E G, et al. Direct localization for massive MIMO[J]. IEEE Transactions on Signal Processing, 2017, 65(10): 2475–2487. doi: 10.1109/TSP.2017.2666779.
    [11] GUO Shisheng, ZHAO Qingsong, CUI Guolong, et al. Behind corner targets location using small aperture millimeter wave radar in NLOS urban environment[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 460–470. doi: 10.1109/JSTARS.2020.2963924.
    [12] 崔铁军. 电磁超材料—从等效媒质到现场可编程系统[J]. 中国科学:信息科学, 2020, 50(10): 1427–1461. doi: 10.1360/SSI-2020-0123.

    CUI Tiejun. Electromagnetic metamaterials-from effective media to field programmable systems[J]. Scientia Sinica Informationis, 2020, 50(10): 1427–1461. doi: 10.1360/SSI-2020-0123.
    [13] WU Qingqing and ZHANG Rui. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming[J]. IEEE Transactions on Wireless Communications, 2019, 18(11): 5394–5409. doi: 10.1109/TWC.2019.2936025.
    [14] WU Qingqing and ZHANG Rui. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network[J]. IEEE Communications Magazine, 2020, 58(1): 106–112. doi: 10.1109/MCOM.001.1900107.
    [15] 刘海霞, 易浩, 马向进, 等. 基于无源可重构智能超表面的室内无线信号覆盖增强[J]. 通信学报, 2022, 43(12): 32–44. doi: 10.11959/j.issn.1000-436x.2022229.

    LIU Haixia, YI Hao, MA Xiangjin, et al. Indoor wireless signal coverage and enhancement based on passive reconfigurable intelligent metasurface[J]. Journal on Communications, 2022, 43(12): 32–44. doi: 10.11959/j.issn.1000-436x.2022229.
    [16] LIU Penglu, LI Yong, CHENG Wei, et al. Intelligent reflecting surface aided NOMA for millimeter-wave massive MIMO with lens antenna array[J]. IEEE Transactions on Vehicular Technology, 2021, 70(5): 4419–4434. doi: 10.1109/TVT.2021.3067938.
    [17] LIU Yang, SHI Qingjiang, WU Qingqing, et al. Joint node activation, beamforming and phase-shifting control in IoT sensor network assisted by reconfigurable intelligent surface[J]. IEEE Transactions on Wireless Communications, 2022, 21(11): 9325–9340. doi: 10.1109/TWC.2022.3175740.
    [18] ZHANG Jingwen, ZHENG Zhong, FEI Zesong, et al. Positioning with dual reconfigurable intelligent surfaces in millimeter-wave MIMO systems[C]. 2020 IEEE/CIC International Conference on Communications in China, Chongqing, China, 2020: 800–805.
    [19] ZHANG Haobo, ZHANG Hongliang, DI Boya, et al. Towards ubiquitous positioning by leveraging reconfigurable intelligent surface[J]. IEEE Communications Letters, 2021, 25(1): 284–288. doi: 10.1109/LCOMM.2020.3023130.
    [20] ABU-SHABAN Z, KEYKHOSRAVI K, KESKIN M F, et al. Near-field localization with a reconfigurable intelligent surface acting as lens[C]. 2021 IEEE International Conference on Communications, Montreal, QC, Canada, 2021: 1–6.
    [21] KEYKHOSRAVI K, KESKIN M F, SECO-GRANADOS G, et al. SISO RIS-enabled joint 3D downlink localization and synchronization[C]. 2021 IEEE International Conference on Communications, Montreal, Canada, 2021: 1–6.
    [22] RAHAL M, DENIS B, KEYKHOSRAVI K, et al. RIS-enabled localization continuity under near-field conditions[C]. 2021 IEEE 22nd International Workshop on Signal Processing Advances in Wireless Communications, Lucca, Italy, 2021: 436–440.
    [23] RINCHI O, ELZANATY A, and ALOUINI M S. Compressive near-field localization for multipath RIS-aided environments[J]. IEEE Communications Letters, 2022, 26(6): 1268–1272. doi: 10.1109/LCOMM.2022.3151036.
    [24] WANG Wei and ZHANG Wei. Joint beam training and positioning for intelligent reflecting surfaces assisted millimeter wave communications[J]. IEEE Transactions on Wireless Communications, 2021, 20(10): 6282–6297. doi: 10.1109/TWC.2021.3073140.
    [25] KEYKHOSRAVI K, KESKIN M F, SECO-GRANADOS G, et al. RIS-enabled SISO localization under user mobility and spatial-wideband effects[J]. IEEE Journal of Selected Topics in Signal Processing, 2022, 16(5): 1125–1140. doi: 10.1109/JSTSP.2022.3175036.
    [26] WANG Bolei, GAO Feifei, JIN Shi, et al. Spatial- and frequency-wideband effects in millimeter-wave massive MIMO systems[J]. IEEE Transactions on Signal Processing, 2018, 66(13): 3393–3406. doi: 10.1109/TSP.2018.2831628.
    [27] CAI Mingming, GAO Kang, NIE Ding, et al. Effect of wideband beam squint on codebook design in phased-array wireless systems[C]. 2016 IEEE Global Communications Conference, Washington, D.C., USA, 2016: 1–6.
    [28] MYERS N J and HEATH R W. InFocus: A spatial coding technique to mitigate misfocus in near-field LoS beamforming[J]. IEEE Transactions on Wireless Communications, 2022, 21(4): 2193–2209. doi: 10.1109/TWC.2021.3110011.
    [29] MA Siqi, SHEN Wenqian, AN Jianping, et al. Wideband channel estimation for IRS-aided systems in the face of beam squint[J]. IEEE Transactions on Wireless Communications, 2021, 20(10): 6240–6253. doi: 10.1109/TWC.2021.3072694.
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  579
  • HTML全文浏览量:  291
  • PDF下载量:  105
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-11
  • 修回日期:  2023-07-12
  • 网络出版日期:  2023-07-20
  • 刊出日期:  2024-04-24

目录

    /

    返回文章
    返回