Three-dimensional Electric Field Sensing Chip Via Piezoelectric Actuation in a Single Shielding Electrode
-
摘要: 为降低激励电压和串扰噪声,实现高灵敏3维电场检测,该文提出一种压电驱动单屏蔽电极3维电场传感芯片。其敏感结构由1组可动屏蔽电极和4组固定感应电极构成,固定感应电极两两对称,在压电驱动结构作用下可动屏蔽电极垂直振动,4组感应电极在待测电场作用下产生周期性的感应电流,通过测量4组感应电极的感应电流,并经过差分求和解耦方法可分别获得x,y,z坐标轴方向的电场分量。该文通过有限元仿真设计了3维电场传感芯片结构,分析了其测量的可行性,对关键结构参数进行优化设计,并设计了敏感芯片加工工艺流程。对研制的芯片进行了实验测试,结果表明,单屏蔽电极3维电场传感芯片在0~50 kV/m电场强度范围内,x,y,z 3轴输出灵敏度分别为0.2214 mV/(kV/m), 0.3580 mV/(kV/m), 2.1768 mV/(kV/m),3维电场的最大测量误差小于5.3%。Abstract: A three-dimensional electric field sensing chip equipped with a single shielding electrode and piezoelectric actuation is proposed. This design achieves high-sensitivity detection of the three-dimensional electric fields, simultaneously reducing excitation voltage and crosstalk noise is proposed. The sensing structure comprises one group of shielding electrodes and four sets of symmetrically distributed sensing electrodes. In response to piezoelectric actuation, the shielding electrodes undergo vertical vibrations, while the four sensing electrode sets generate induced currents when subjected to external electric fields. A differential decoupling method can be used to calculate the signals corresponding to the electric field components along the x-, y-, and z-axes. Finite element simulation was conducted to design the structure of the three-dimensional electric field sensing chip, analyze the feasibility of its measurement, and optimize key structural parameters. The fabrication process for the sensing chip was designed and implemented. Experimental results reveal that the output sensitivities are 0.2214 mV/(kV/m) for the x-axis, 0.3580 mV/(kV/m) for the y-axis, and 2.1768 mV/(kV/m) for the z-axis. The maximum measurement error for the three-dimensional electric fields remains < 5.3%.
-
Key words:
- Single shielding electrode /
- Three-dimensional /
- Electric field /
- Vertical vibration
-
表 1 传感器关键结构参数
关键结构参数 参数值 敏感电极宽度wi 5 μm 屏蔽电极宽度ws 5 μm 敏感电极长度li 620 μm 屏蔽电极长度ls 620 μm 相邻感应电极与屏蔽电极间距g 5 μm 工作电极长度l 600 μm SOI器件层厚度he 5 μm 压电层厚度hp 0.5 μm 压电层长度lp 800 μm 压电层宽度wp 50 μm 驱动电极组数 4 表 2 3维电场传感芯片的灵敏度(mV/(kV/m))
电场方向 x轴输出灵敏度 y轴输出灵敏度 z轴输出灵敏度 沿x轴 0.2214 0.0218 0.0420 沿y轴 0.0100 0.3580 0.0057 沿z轴 0.0584 0.0423 2.1768 表 3 3维电场传感芯片在空间作不同角度旋转时的输出信号与合成电场
旋转角度 施加电场(kV/m) Vxout (mV) Vyout (mV) Vzout (mV) 合成电场(kV/m) 误差(%) 角度1 20 1.171 0.025 44.047 20.37 1.85 40 2.297 0.867 87.503 40.27 0.68 角度2 20 0.834 5.090 33.302 19.74 1.30 40 1.708 10.180 66.294 39.35 1.63 角度3 20 3.330 5.350 22.330 20.24 1.20 40 6.620 10.640 44.430 40.25 0.62 角度4 20 4.740 1.470 20.200 21.05 5.25 40 9.440 2.940 40.250 41.92 4.80 -
[1] MONTANYA J, BERGAS J, and HERMOSO B. Electric field measurements at ground level as a basis for lightning hazard warning[J]. Journal of Electrostatics, 2004, 60(2/4): 241–246. doi: 10.1016/j.elstat.2004.01.009. [2] 邓鹤鸣, 何正浩, 马军, 等. 沙尘天气下大沙粒对放电发展的影响[J]. 高电压技术, 2010, 36(5): 1246–1252. doi: 10.13336/j.1003-6520.hve.2010.05.030.DENG Heming, HE Zhenghao, MA Jun, et al. Effect of large sanddust particles on discharge development in sand dust weather[J]. High Voltage Engineering, 2010, 36(5): 1246–1252. doi: 10.13336/j.1003-6520.hve.2010.05.030. [3] SONG Di and MEHRANI P. Mechanism of particle build-up on gas-solid fluidization column wall due to electrostatic charge generation[J]. Powder Technology, 2017, 316: 166–177. doi: 10.1016/j.powtec.2017.01.031. [4] WANG Decai, LI Ping, and WEN Yumei. Design and modeling of magnetically driven electric-field sensor for non-contact DC voltage measurement in electric power systems[J]. Review of Scientific Instruments, 2016, 87(10): 105001. doi: 10.1063/1.4963852. [5] PENG Chunrong, YANG Pengfei, LIU Shiguo, et al. Detecting internal defect of non-ceramic insulators using a novel micromachined electric field sensor[C]. Proceedings of the 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems, Cancun, Mexico, 2011: 561–564. [6] LIU Yaowen. Analysis of the detection method of insulators deterioration based on optical electric field sensors[J]. IOP Conference Series:Earth and Environmental Science, 2021, 714(4): 042047. doi: 10.1088/1755-1315/714/4/042047. [7] HAN Zhifei, XUE Fen, HU Jun, et al. Micro electric field sensors: Principles and applications[J]. IEEE Industrial Electronics Magazine, 2021, 15(4): 35–42. doi: 10.1109/MIE.2020.3046226. [8] 李义鹏, 孟鹤, 孙立富, 等. 大型车辆加油过程静电危险因素的分析及试验研究[J]. 石油库与加油站, 2015, 24(1): 15–17. doi: 10.3969/j.issn.1008-2263.2015.01.005.LI Yipeng, MENG He, SUN Lifu, et al. Analysis on electrostatic risk factors of large vehicle refueling process[J]. Oil Depot and Gas Station, 2015, 24(1): 15–17. doi: 10.3969/j.issn.1008-2263.2015.01.005. [9] 包磊, 曹志忻. 船舶输油管路中的静电分析[J]. 上海船舶运输科学研究所学报, 2015, 38(3): 40–42. doi: 10.3969/j.issn.1674-5949.2015.03.009.BAO Lei and CAO Zhixin. Static electricity in ship oil piping[J]. Journal of Shanghai Ship and Shipping Research Institute, 2015, 38(3): 40–42. doi: 10.3969/j.issn.1674-5949.2015.03.009. [10] CHOU H C, YEH C T, and SHU C M. Fire accident investigation of an explosion caused by static electricity in a propylene plant[J]. Process Safety and Environmental Protection, 2015, 97: 116–121. doi: 10.1016/j.psep.2015.02.007. [11] XIAO Juncheng, ZHENG Feng, FEI Jiayang, et al. Electrostatic discharge protection of MiniLED backlight units on glass[J]. Energy Reports, 2021, 7: 276–282. doi: 10.1016/j.egyr.2021.08.046. [12] ZHU Guixia, LAN Jian, LI Diliang, et al. Study on the reduced reliability of a certain amplifier caused by electrostatic discharge (ESD)[J]. IOP Conference Series:Materials Science and Engineering, 2021, 1043(3): 032005. doi: 10.1088/1757-899X/1043/3/032005. [13] HSU C H and MULLER R S. Micromechanical electrostatic voltmeter[C]. 1991 International Conference on Solid-state Sensors and Actuators. Digest of Technical Papers, San Francisco, USA, 1991: 659–662. [14] RIEHL P S, SCOTT K L, MULLER R S, et al. Electrostatic charge and field sensors based on micromechanical resonators[J]. Journal of Microelectromechanical Systems, 2003, 12(5): 577–589. doi: 10.1109/JMEMS.2003.818066. [15] BAHREYNI B, WIJEWEERA G, SHAFAI C, et al. Analysis and design of a micromachined electric-field sensor[J]. Journal of Microelectromechanical Systems, 2008, 17(1): 31–36. doi: 10.1109/JMEMS.2007.911870. [16] YANG Pengfei, PENG Chunrong, ZHANG Haiyan, et al. A high sensitivity SOI electric-field sensor with novel comb-shaped microelectrodes[C]. 2011 16th International Solid-state Sensors, Actuators and Microsystems Conference, Beijing, China, 2011: 1034–1037. [17] YANG Pengfei, PENG Chunrong, FANG Dongming, et al. Design, fabrication and application of an SOI-based resonant electric field microsensor with coplanar comb-shaped electrodes[J]. Journal of Micromechanics and Microengineering, 2013, 23(5): 055002. doi: 10.1088/0960-1317/23/5/055002. [18] CHU Zhaozhi, PENG Chunrong, REN Ren, et al. A high sensitivity electric field microsensor based on torsional resonance[J]. Sensors, 2018, 18(1): 286. doi: 10.3390/s18010286. [19] LEI Hucheng, XIA Shanhong, CHU Zhaozhi, et al. An electric field microsensor with mutual shielding electrodes[J]. Micromachines, 2021, 12(4): 360. doi: 10.3390/mi12040360. [20] LIU Xiangming, WANG Zilong, WU Zhengwei, et al. Enhanced sensitivity and stability of a novel resonant MEMS electric field sensor based on closed-loop feedback[J]. IEEE Sensors Journal, 2021, 21(20): 22536–22543. doi: 10.1109/JSEN.2021.3107511. [21] KRUPKA M A, MATTHEWS R, SAY C, et al. Development and test of free space electric field sensors with microvolt sensitivity[R]. Technical Report, AD-A409234, 2001. [22] 张星, 白强, 夏善红, 等. 新型三维电场传感器原理及试验结果[J]. 电子器件, 2006, 29(1): 118–120. doi: 10.3969/j.issn.1005-9490.2006.01.033.ZHANG Xing, BAI Qiang, XIA Shanhong, et al. Principle of a novel three dimension electric field sensor and its test result[J]. Chinese Journal of Electron Devices, 2006, 29(1): 118–120. doi: 10.3969/j.issn.1005-9490.2006.01.033. [23] 李冰, 彭春荣, 凌必赟, 等. 基于遗传算法的三维电场传感器解耦标定方法研究[J]. 电子与信息学报, 2017, 39(9): 2252–2258. doi: 10.11999/JEIT161277.LI Bing, PENG Chunrong, LING Biyun, et al. The decoupling calibration method based on genetic algorithm of three dimensional electric field sensor[J]. Journal of Electronics &Information Technology, 2017, 39(9): 2252–2258. doi: 10.11999/JEIT161277. [24] 闻小龙, 彭春荣, 方东明, 等. 基于共面去耦结构的空间三维电场测量方法[J]. 电子与信息学报, 2014, 36(10): 2504–2508. doi: 10.3724/SP.J.1146.2013.01921.WEN Xiaolong, PENG Chunrong, FANG Dongming, et al. Measuring method of three dimensional atmospheric electric field based on coplanar decoupling structure[J]. Journal of Electronics &Information Technology, 2014, 36(10): 2504–2508. doi: 10.3724/SP.J.1146.2013.01921. [25] LING B, WANG Y, PENG C, et al. Single-chip 3D electric field microsensor[J]. Frontiers of Mechanical Engineering, 2017, 12(4): 581–590. doi: 10.1007/s11465-017-0454-x.