高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种压电驱动单屏蔽电极3维电场传感芯片

彭思敏 夏善红 刘向明 高雅浩 张洲威 张巍 邢学斌 刘语斐 毋正伟 彭春荣

彭思敏, 夏善红, 刘向明, 高雅浩, 张洲威, 张巍, 邢学斌, 刘语斐, 毋正伟, 彭春荣. 一种压电驱动单屏蔽电极3维电场传感芯片[J]. 电子与信息学报, 2024, 46(4): 1513-1520. doi: 10.11999/JEIT230361
引用本文: 彭思敏, 夏善红, 刘向明, 高雅浩, 张洲威, 张巍, 邢学斌, 刘语斐, 毋正伟, 彭春荣. 一种压电驱动单屏蔽电极3维电场传感芯片[J]. 电子与信息学报, 2024, 46(4): 1513-1520. doi: 10.11999/JEIT230361
PENG Simin, XIA Shanhong, LIU Xiangming, GAO Yahao, ZHANG Zhouwei, ZHANG Wei, XING Xuebin, LIU Yufei, WU Zhengwei, PENG Chunrong. Three-dimensional Electric Field Sensing Chip Via Piezoelectric Actuation in a Single Shielding Electrode[J]. Journal of Electronics & Information Technology, 2024, 46(4): 1513-1520. doi: 10.11999/JEIT230361
Citation: PENG Simin, XIA Shanhong, LIU Xiangming, GAO Yahao, ZHANG Zhouwei, ZHANG Wei, XING Xuebin, LIU Yufei, WU Zhengwei, PENG Chunrong. Three-dimensional Electric Field Sensing Chip Via Piezoelectric Actuation in a Single Shielding Electrode[J]. Journal of Electronics & Information Technology, 2024, 46(4): 1513-1520. doi: 10.11999/JEIT230361

一种压电驱动单屏蔽电极3维电场传感芯片

doi: 10.11999/JEIT230361
基金项目: 国家自然科学基金(62031025, 61971398),国家重点研发计划(2022YFB3207300, 2021YFB2011700),中国科学院科研仪器设备研制项目(YJKYYQ20200026, GJJSTD20210004)
详细信息
    作者简介:

    彭思敏:女,博士生,研究方向为单芯片MEMS 3维电场传感器

    夏善红:女,博士,研究员,研究方向为传感器与微系统技术

    刘向明:男,博士生,研究方向为高灵敏度的MEMS电场传感器

    高雅浩:男,博士生,研究方向为高灵敏度的MEMS电场传感器

    张洲威:男,硕士生,研究方向为MEMS电场传感器宽频带电场检测方法

    张巍:男,博士生,研究方向为MEMS电场传感器积累电荷消除

    邢学斌:男,硕士生,研究方向为一体化MEMS 3维电场探空仪技术

    刘语斐:女,硕士生,研究方向为模态局域化MEMS电场传感器

    毋正伟:男,博士,高级工程师,研究方向为MEMS谐振式微传感器研制及其真空封装技术

    彭春荣:男,博士,研究员,研究方向为MEMS电场传感器芯片及系统

    通讯作者:

    夏善红 shxia@mail.ie.ac.cn

  • 中图分类号: TN4; TP212

Three-dimensional Electric Field Sensing Chip Via Piezoelectric Actuation in a Single Shielding Electrode

Funds: The National Natural Science Foundation of China (62031025, 61971398), The National Key R&D Program of China (2022YFB3207300, 2021YFB2011700), The Scientific Instrument Developing Project of the Chinese Academy of Sciences (YJKYYQ20200026, GJJSTD20210004)
  • 摘要: 为降低激励电压和串扰噪声,实现高灵敏3维电场检测,该文提出一种压电驱动单屏蔽电极3维电场传感芯片。其敏感结构由1组可动屏蔽电极和4组固定感应电极构成,固定感应电极两两对称,在压电驱动结构作用下可动屏蔽电极垂直振动,4组感应电极在待测电场作用下产生周期性的感应电流,通过测量4组感应电极的感应电流,并经过差分求和解耦方法可分别获得x,y,z坐标轴方向的电场分量。该文通过有限元仿真设计了3维电场传感芯片结构,分析了其测量的可行性,对关键结构参数进行优化设计,并设计了敏感芯片加工工艺流程。对研制的芯片进行了实验测试,结果表明,单屏蔽电极3维电场传感芯片在0~50 kV/m电场强度范围内,x,y,z 3轴输出灵敏度分别为0.2214 mV/(kV/m), 0.3580 mV/(kV/m), 2.1768 mV/(kV/m),3维电场的最大测量误差小于5.3%。
  • 图  1  单屏蔽电极3维电场传感芯片结构示意图

    图  2  传感芯片工作原理示意图

    图  3  4组感应电极感应电荷变化量与屏蔽电极位移关系图

    图  4  单位长度上电荷变化量B随电极宽度wi和电极间距g变化的关系

    图  5  感应电荷变化量随弹性层厚度变化关系

    图  6  双端固支压电梁最大稳态位移随压电层长度和宽度变化关系

    图  7  电场敏感芯片实物照片和扫描电镜照片

    图  8  实验测试装置示意图

    图  9  单屏蔽电极3维电场传感芯片单轴标定

    表  1  传感器关键结构参数

    关键结构参数参数值
    敏感电极宽度wi5 μm
    屏蔽电极宽度ws5 μm
    敏感电极长度li620 μm
    屏蔽电极长度ls620 μm
    相邻感应电极与屏蔽电极间距g5 μm
    工作电极长度l600 μm
    SOI器件层厚度he5 μm
    压电层厚度hp0.5 μm
    压电层长度lp800 μm
    压电层宽度wp50 μm
    驱动电极组数4
    下载: 导出CSV

    表  2  3维电场传感芯片的灵敏度(mV/(kV/m))

    电场方向x轴输出灵敏度y轴输出灵敏度z轴输出灵敏度
    沿x0.22140.02180.0420
    沿y0.01000.35800.0057
    沿z0.05840.04232.1768
    下载: 导出CSV

    表  3  3维电场传感芯片在空间作不同角度旋转时的输出信号与合成电场

    旋转角度施加电场(kV/m)Vxout (mV)Vyout (mV)Vzout (mV)合成电场(kV/m)误差(%)
    角度1201.1710.02544.04720.371.85
    402.2970.86787.50340.270.68
    角度2200.8345.09033.30219.741.30
    401.70810.18066.29439.351.63
    角度3203.3305.35022.33020.241.20
    406.62010.64044.43040.250.62
    角度4204.7401.47020.20021.055.25
    409.4402.94040.25041.924.80
    下载: 导出CSV
  • [1] MONTANYA J, BERGAS J, and HERMOSO B. Electric field measurements at ground level as a basis for lightning hazard warning[J]. Journal of Electrostatics, 2004, 60(2/4): 241–246. doi: 10.1016/j.elstat.2004.01.009.
    [2] 邓鹤鸣, 何正浩, 马军, 等. 沙尘天气下大沙粒对放电发展的影响[J]. 高电压技术, 2010, 36(5): 1246–1252. doi: 10.13336/j.1003-6520.hve.2010.05.030.

    DENG Heming, HE Zhenghao, MA Jun, et al. Effect of large sanddust particles on discharge development in sand dust weather[J]. High Voltage Engineering, 2010, 36(5): 1246–1252. doi: 10.13336/j.1003-6520.hve.2010.05.030.
    [3] SONG Di and MEHRANI P. Mechanism of particle build-up on gas-solid fluidization column wall due to electrostatic charge generation[J]. Powder Technology, 2017, 316: 166–177. doi: 10.1016/j.powtec.2017.01.031.
    [4] WANG Decai, LI Ping, and WEN Yumei. Design and modeling of magnetically driven electric-field sensor for non-contact DC voltage measurement in electric power systems[J]. Review of Scientific Instruments, 2016, 87(10): 105001. doi: 10.1063/1.4963852.
    [5] PENG Chunrong, YANG Pengfei, LIU Shiguo, et al. Detecting internal defect of non-ceramic insulators using a novel micromachined electric field sensor[C]. Proceedings of the 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems, Cancun, Mexico, 2011: 561–564.
    [6] LIU Yaowen. Analysis of the detection method of insulators deterioration based on optical electric field sensors[J]. IOP Conference Series:Earth and Environmental Science, 2021, 714(4): 042047. doi: 10.1088/1755-1315/714/4/042047.
    [7] HAN Zhifei, XUE Fen, HU Jun, et al. Micro electric field sensors: Principles and applications[J]. IEEE Industrial Electronics Magazine, 2021, 15(4): 35–42. doi: 10.1109/MIE.2020.3046226.
    [8] 李义鹏, 孟鹤, 孙立富, 等. 大型车辆加油过程静电危险因素的分析及试验研究[J]. 石油库与加油站, 2015, 24(1): 15–17. doi: 10.3969/j.issn.1008-2263.2015.01.005.

    LI Yipeng, MENG He, SUN Lifu, et al. Analysis on electrostatic risk factors of large vehicle refueling process[J]. Oil Depot and Gas Station, 2015, 24(1): 15–17. doi: 10.3969/j.issn.1008-2263.2015.01.005.
    [9] 包磊, 曹志忻. 船舶输油管路中的静电分析[J]. 上海船舶运输科学研究所学报, 2015, 38(3): 40–42. doi: 10.3969/j.issn.1674-5949.2015.03.009.

    BAO Lei and CAO Zhixin. Static electricity in ship oil piping[J]. Journal of Shanghai Ship and Shipping Research Institute, 2015, 38(3): 40–42. doi: 10.3969/j.issn.1674-5949.2015.03.009.
    [10] CHOU H C, YEH C T, and SHU C M. Fire accident investigation of an explosion caused by static electricity in a propylene plant[J]. Process Safety and Environmental Protection, 2015, 97: 116–121. doi: 10.1016/j.psep.2015.02.007.
    [11] XIAO Juncheng, ZHENG Feng, FEI Jiayang, et al. Electrostatic discharge protection of MiniLED backlight units on glass[J]. Energy Reports, 2021, 7: 276–282. doi: 10.1016/j.egyr.2021.08.046.
    [12] ZHU Guixia, LAN Jian, LI Diliang, et al. Study on the reduced reliability of a certain amplifier caused by electrostatic discharge (ESD)[J]. IOP Conference Series:Materials Science and Engineering, 2021, 1043(3): 032005. doi: 10.1088/1757-899X/1043/3/032005.
    [13] HSU C H and MULLER R S. Micromechanical electrostatic voltmeter[C]. 1991 International Conference on Solid-state Sensors and Actuators. Digest of Technical Papers, San Francisco, USA, 1991: 659–662.
    [14] RIEHL P S, SCOTT K L, MULLER R S, et al. Electrostatic charge and field sensors based on micromechanical resonators[J]. Journal of Microelectromechanical Systems, 2003, 12(5): 577–589. doi: 10.1109/JMEMS.2003.818066.
    [15] BAHREYNI B, WIJEWEERA G, SHAFAI C, et al. Analysis and design of a micromachined electric-field sensor[J]. Journal of Microelectromechanical Systems, 2008, 17(1): 31–36. doi: 10.1109/JMEMS.2007.911870.
    [16] YANG Pengfei, PENG Chunrong, ZHANG Haiyan, et al. A high sensitivity SOI electric-field sensor with novel comb-shaped microelectrodes[C]. 2011 16th International Solid-state Sensors, Actuators and Microsystems Conference, Beijing, China, 2011: 1034–1037.
    [17] YANG Pengfei, PENG Chunrong, FANG Dongming, et al. Design, fabrication and application of an SOI-based resonant electric field microsensor with coplanar comb-shaped electrodes[J]. Journal of Micromechanics and Microengineering, 2013, 23(5): 055002. doi: 10.1088/0960-1317/23/5/055002.
    [18] CHU Zhaozhi, PENG Chunrong, REN Ren, et al. A high sensitivity electric field microsensor based on torsional resonance[J]. Sensors, 2018, 18(1): 286. doi: 10.3390/s18010286.
    [19] LEI Hucheng, XIA Shanhong, CHU Zhaozhi, et al. An electric field microsensor with mutual shielding electrodes[J]. Micromachines, 2021, 12(4): 360. doi: 10.3390/mi12040360.
    [20] LIU Xiangming, WANG Zilong, WU Zhengwei, et al. Enhanced sensitivity and stability of a novel resonant MEMS electric field sensor based on closed-loop feedback[J]. IEEE Sensors Journal, 2021, 21(20): 22536–22543. doi: 10.1109/JSEN.2021.3107511.
    [21] KRUPKA M A, MATTHEWS R, SAY C, et al. Development and test of free space electric field sensors with microvolt sensitivity[R]. Technical Report, AD-A409234, 2001.
    [22] 张星, 白强, 夏善红, 等. 新型三维电场传感器原理及试验结果[J]. 电子器件, 2006, 29(1): 118–120. doi: 10.3969/j.issn.1005-9490.2006.01.033.

    ZHANG Xing, BAI Qiang, XIA Shanhong, et al. Principle of a novel three dimension electric field sensor and its test result[J]. Chinese Journal of Electron Devices, 2006, 29(1): 118–120. doi: 10.3969/j.issn.1005-9490.2006.01.033.
    [23] 李冰, 彭春荣, 凌必赟, 等. 基于遗传算法的三维电场传感器解耦标定方法研究[J]. 电子与信息学报, 2017, 39(9): 2252–2258. doi: 10.11999/JEIT161277.

    LI Bing, PENG Chunrong, LING Biyun, et al. The decoupling calibration method based on genetic algorithm of three dimensional electric field sensor[J]. Journal of Electronics &Information Technology, 2017, 39(9): 2252–2258. doi: 10.11999/JEIT161277.
    [24] 闻小龙, 彭春荣, 方东明, 等. 基于共面去耦结构的空间三维电场测量方法[J]. 电子与信息学报, 2014, 36(10): 2504–2508. doi: 10.3724/SP.J.1146.2013.01921.

    WEN Xiaolong, PENG Chunrong, FANG Dongming, et al. Measuring method of three dimensional atmospheric electric field based on coplanar decoupling structure[J]. Journal of Electronics &Information Technology, 2014, 36(10): 2504–2508. doi: 10.3724/SP.J.1146.2013.01921.
    [25] LING B, WANG Y, PENG C, et al. Single-chip 3D electric field microsensor[J]. Frontiers of Mechanical Engineering, 2017, 12(4): 581–590. doi: 10.1007/s11465-017-0454-x.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  313
  • HTML全文浏览量:  174
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-04
  • 修回日期:  2023-06-30
  • 网络出版日期:  2023-07-06
  • 刊出日期:  2024-04-24

目录

    /

    返回文章
    返回