高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

智能反射面增强的全双工环境反向散射通信系统波束成形算法

张晓茜 徐勇军 吴翠先 黄崇文

张晓茜, 徐勇军, 吴翠先, 黄崇文. 智能反射面增强的全双工环境反向散射通信系统波束成形算法[J]. 电子与信息学报, 2024, 46(3): 914-924. doi: 10.11999/JEIT230356
引用本文: 张晓茜, 徐勇军, 吴翠先, 黄崇文. 智能反射面增强的全双工环境反向散射通信系统波束成形算法[J]. 电子与信息学报, 2024, 46(3): 914-924. doi: 10.11999/JEIT230356
ZHANG Xiaoxi, XU Yongjun, WU Cuixian, HUANG Chongwen. Beamforming Design for Reconfigurable Intelligent Surface Enhanced Full-duplex Ambient Backscatter Communication Networks[J]. Journal of Electronics & Information Technology, 2024, 46(3): 914-924. doi: 10.11999/JEIT230356
Citation: ZHANG Xiaoxi, XU Yongjun, WU Cuixian, HUANG Chongwen. Beamforming Design for Reconfigurable Intelligent Surface Enhanced Full-duplex Ambient Backscatter Communication Networks[J]. Journal of Electronics & Information Technology, 2024, 46(3): 914-924. doi: 10.11999/JEIT230356

智能反射面增强的全双工环境反向散射通信系统波束成形算法

doi: 10.11999/JEIT230356
基金项目: 国家自然科学基金(62271094),重庆市自然科学基金(CSTB2022NSCQ-LZX0009),重庆市教委科学技术研究项目(KJZD-K202200601),浙江省信息处理与通信网络重点实验室开放课题(IPCAN-2302)
详细信息
    作者简介:

    张晓茜:男,博士生,研究方向为反向散射通信、智能反射面等

    徐勇军:男,副教授,博士生导师,研究方向为反向散射通信、智能反射面、资源分配等

    吴翠先:女,正高级工程师,硕士生导师,研究方向为智能反射面、资源分配、共生无线电等

    黄崇文:男,教授,博士生导师,研究方向为智能反射面、机器学习、资源分配等

    通讯作者:

    徐勇军 xuyj@cqupt.edu.cn

  • 11 假设节点的分布情况为稀疏分布,该文探究的模型也同样可以迁移到用户密集分布的情况。2 根据文献[21],假设RIS 反射多次信号的功率可被忽略,同时考虑其在反射期间无能量损失。
  • 中图分类号: TN929.5

Beamforming Design for Reconfigurable Intelligent Surface Enhanced Full-duplex Ambient Backscatter Communication Networks

Funds: The National Natural Science Foundation of China (62271094), Natural Science Foundation of Chongqing (CSTB2022NSCQ-LZX0009), The Scientific and Technological Research Program of Chongqing Municipal Education Commission (KJZD-K202200601), The Open Project of Zhejiang Provincial Key Laboratory of Information Processing and Communication Networking (IPCAN-2302)
  • 摘要: 当前传统环境反向散射通信存在双重衰落、障碍物阻挡和网络容量有限的问题。智能反射面(RIS)作为6G的关键候选技术因能够主动改善信号传输质量、提升通信系统传输性能而备受关注。为此,该文将RIS与全双工技术引入到环境反向散射通信系统,研究了考虑硬件损伤与RIS离散相移的RIS增强全双工环境反向散射通信系统波束成形算法。首先,考虑反射节点最小能量收集与服务质量约束、功率站最大发射功率约束和RIS相移约束,建立了总发射功率最小的波束成形优化问题。然后,利用交替优化、半正定松弛、变量替换、半正定规划将原非凸问题转化成可求解的凸优化问题。最后,仿真结果表明,所提算法比传统波束成形方法平均功耗降低了7.8%。
  • 图  1  RIS增强的全双工环境反向散射通信系统模型

    图  2  不同算法下HAP发射功率与反射节点到HAP距离$D$的关系

    图  3  不同算法下HAP发射功率与硬件损伤因子$\kappa $的关系

    图  4  不同算法下HAP发射功率与最小信干噪比$\gamma _k^{\min }$的关系

    图  5  不同算法下HAP发射功率与反射单元数$M$的关系

    图  6  不同算法下HAP发射功率与最小信干噪比$\gamma _k^{\min }$的关系

    图  7  不同算法下HAP发射功率与反射节点数量$K$的关系

    算法1 基于迭代的发射功率最小化波束成形算法
     初始化系统参数:$M$, $K$, $ {N}_{\mathrm{t}} $, ${N_{ {\rm{r} } } }$, $T$, ${{\boldsymbol{F}}_{\rm d} }$, ${{\boldsymbol{F}}_{\rm u} }$, ${{\boldsymbol{g}}_{ { {\rm{d} } } ,k} }$, ${{\boldsymbol{g}}_{ { {\rm{u} } } ,k} }$, ${{\boldsymbol{h}}_{ { {\rm{d} } } ,k} }$,
     ${{\boldsymbol{h}}_{ { {\rm{u} } } ,k} }$, ${ { {{\boldsymbol{\varTheta}} } }_{\rm u} }$, ${ { {{\boldsymbol{\varPhi}} } }_{\rm u} }$, ${ { {{\boldsymbol{\varTheta}} } }_{\rm d} }$, ${ { {{\boldsymbol{\varPhi}} } }_{\rm d} }$, $ {\kappa _{\rm d} } $, ${\kappa _{ {{\rm{u}}} ,k} }$, $b$, ${\mu _k}$, $ {\beta _k} $, $\bar \sigma _{ {{\rm{B}}} ,k}^2$, $\sigma _k^2$, $ \gamma _k^{\min } $,
     $ {P^{\max }} $, $ E_k^{\min } $, ${\boldsymbol{v}}_{\rm u} ^{(l)}$, ${\boldsymbol{v}}_{\rm d} ^{(l)}$, $ {\boldsymbol{w}}_k^{(l)} $;设置收敛精度$\varepsilon = {10^{ - 5} }$,最大
     迭代次数$ {L_{\max }} $,初始化$l = 1$,令$\mathcal{Q} = \displaystyle\sum\nolimits_{k = 1}^K { {\rm{Tr} }({ {\boldsymbol{w} }_k}{\boldsymbol{w} }_k^{\rm{H} })}$;
     (1) While $\left| { {\mathcal{Q}^{(l+1)} } - {\mathcal{Q}^{(l )} } } \right| \ge \varepsilon$或$l \le {L_{\max } }$ do
     (2)  Repeat
     (3)   固定$\{ {\boldsymbol{v}}_{\rm u} ^{(l)},{\boldsymbol{v}}_{\rm d} ^{(l)}\} $,求解式(11)得到$ {\boldsymbol{W}}_k^* $,进而得到$ {\boldsymbol{w}}_k^* $
         并更新$ {\boldsymbol{w}}_k^{(l + 1)} $;
     (4)  Until 收敛;
     (5)  Repeat
     (6)   固定$ \{ {\boldsymbol{w}}_k^{(l + 1)},{\boldsymbol{v}}_{\rm d} ^{(l)}\} $,求解式(17)得到${\boldsymbol{U}}_{\rm u} ^*$,进而得到${\boldsymbol{v}}_{\rm u} ^*$
         并更新${\boldsymbol{v}}_{\rm u} ^{(l + 1)}$;
     (7)  Until 收敛;
     (8)  Repeat
     (9)   固定$ {\boldsymbol{w}}_k^{(l + 1)} $和${\boldsymbol{v}}_{\rm u} ^{(l + 1)}$,求解式(22)得到${\boldsymbol{U}}_{\rm d} ^*$,进而得到
         ${\boldsymbol{v}}_{\rm d} ^*$并更新${\boldsymbol{v}}_{\rm d} ^{(l + 1)}$;
     (10) Until 收敛;
     (11) 并令$l = l + 1$将得到的$ \{ {\boldsymbol{w}}_k^{(l+1)},{\boldsymbol{v}}_{\rm u} ^{(l+1)},{\boldsymbol{v}}_{\rm d} ^{(l+1)}\} $代入计算
        $ {\mathcal{Q}^{(l+1)}} $;
     (12) End while
     (13) 得到$\{ {\boldsymbol{w} }_k^* = {\boldsymbol{w} }_k^{(l)},k \in \mathcal{K},{\boldsymbol{v}}_{\rm u} ^* = {\boldsymbol{v} }_{\rm u} ^{(l)},{\boldsymbol{v}}_{\rm d} ^* = {\boldsymbol{v} }_{\rm d} ^{(l)}\}$。
    下载: 导出CSV

    表  1  不同算法对比

    算法名称优化目标模式RIS相移硬件状态
    半双工算法[27]最小化
    发射功
    半双工/理想
    全双工算法[28]全双工/非理想
    RIS辅助算法[29]半双工连续相移理想
    所提算法全双工离散相移非理想
    下载: 导出CSV
  • [1] MA Dong, LAN Guohao, HASSAN M, et al. Sensing, computing, and communications for energy harvesting IoTs: A survey[J]. IEEE Communications Surveys & Tutorials, 2020, 22(2): 1222–1250. doi: 10.1109/COMST.2019.2962526.
    [2] LI Xingwang, WANG Qunshu, ZENG Ming, et al. Physical-layer authentication for ambient backscatter-aided NOMA symbiotic systems[J]. IEEE Transactions on Communications, 2023, 71(4): 2288–2303. doi: 10.1109/TCOMM.2023.3245659.
    [3] XU Yongjun, GUI Guan, GACANIN H, et al. A survey on resource allocation for 5G heterogeneous networks: Current research, future trends, and challenges[J]. IEEE Communications Surveys & Tutorials, 2021, 23(2): 668–695. doi: 10.1109/COMST.2021.3059896.
    [4] LI Xingwang, ZHENG Yike, KHAN W U, et al. Physical layer security of cognitive ambient backscatter communications for green Internet-of-Things[J]. IEEE Transactions on Green Communications and Networking, 2021, 5(3): 1066–1076. doi: 10.1109/TGCN.2021.3062060.
    [5] XU Yongjun, XIE Hao, WU Qingqing, et al. Robust max-min energy efficiency for RIS-aided HetNets with distortion noises[J]. IEEE Transactions on Communications, 2022, 70(2): 1457–1471. doi: 10.1109/TCOMM.2022.3141798.
    [6] 徐勇军, 刘子腱, 李国权, 等. 基于NOMA的无线携能D2D通信鲁棒能效优化算法[J]. 电子与信息学报, 2021, 43(5): 1289–1297. doi: 10.11999/JEIT200175.

    XU Yongjun, LIU Zijian, LI Guoquan, et al. Robust energy efficiency optimization algorithm for NOMA-based D2D communication with simultaneous wireless information and power transfer[J]. Journal of Electronics &Information Technology, 2021, 43(5): 1289–1297. doi: 10.11999/JEIT200175.
    [7] 张晓茜, 徐勇军. 面向零功耗物联网的反向散射通信综述[J]. 通信学报, 2022, 43(11): 199–212. doi: 10.11959/j.issn.1000-436x.2022199.

    ZHANG Xiaoxi and XU Yongjun. Survey on backscatter communication for zero-power IoT[J]. Journal on Communications, 2022, 43(11): 199–212. doi: 10.11959/j.issn.1000-436x.2022199.
    [8] CHEN Yunfei. Performance of ambient backscatter systems using reconfigurable intelligent surface[J]. IEEE Communications Letters, 2021, 25(8): 2536–2539. doi: 10.1109/LCOMM.2021.3083110.
    [9] MA Hui, ZHANG Haijun, ZHANG Ning, et al. Reconfigurable intelligent surface with energy harvesting assisted cooperative ambient backscatter communications[J]. IEEE Wireless Communications Letters, 2022, 11(6): 1283–1287. doi: 10.1109/LWC.2022.3164257.
    [10] GALAPPATHTHIGE D L, REZAEI F, TELLAMBURA C, et al. RIS-empowered ambient backscatter communication systems[J]. IEEE Wireless Communications Letters, 2023, 12(1): 173–177. doi: 10.1109/LWC.2022.3220158.
    [11] CHEN Hao, YANG Gang, and LIANG Yingchang. Joint active and passive beamforming for reconfigurable intelligent surface enhanced symbiotic radio system[J]. IEEE Wireless Communications Letters, 2021, 10(5): 1056–1060. doi: 10.1109/LWC.2021.3056874.
    [12] HU Jinlin, LIANG Yingchang, and PEI Yiyang. Reconfigurable intelligent surface enhanced multi-user MISO symbiotic radio system[J]. IEEE Transactions on Communications, 2021, 69(4): 2359–2371. doi: 10.1109/TCOMM.2020.3047444.
    [13] ZUO Jiakuo, LIU Yuanwei, YANG Liang, et al. Reconfigurable intelligent surface enhanced NOMA assisted backscatter communication system[J]. IEEE Transactions on Vehicular Technology, 2021, 70(7): 7261–7266. doi: 10.1109/TVT.2021.3087582.
    [14] LIU Qiang, FU Meixia, LI Wei, et al. RIS-assisted ambient backscatter communication for SAGIN IoT[J]. IEEE Internet of Things Journal, 2023, 10(11): 9375–9384. doi: 10.1109/JIOT.2022.3224587.
    [15] RAMEZANI P and JAMALIPOUR A. Backscatter-assisted wireless powered communication networks empowered by intelligent reflecting surface[J]. IEEE Transactions on Vehicular Technology, 2021, 70(11): 11908–11922. doi: 10.1109/TVT.2021.3116708.
    [16] MAO Sun, YANG Kun, HU Jie, et al. Intelligent reflecting surface-aided wireless powered hybrid backscatter-active communication networks[J]. IEEE Transactions on Vehicular Technology, 2023, 72(1): 1383–1388. doi: 10.1109/TVT.2022.3205950.
    [17] WANG Jinming, XU Sai, HAN Shuai, et al. Multicast secrecy rate maximization for reconfigurable intelligent surface backscatter communication[J]. IEEE Communications Letters, 2022, 26(12): 2855–2859. doi: 10.1109/LCOMM.2022.3208018.
    [18] LI Xingwang, ZHENG Yike, ZENG Ming, et al. Enhancing secrecy performance for STAR-RIS NOMA networks[J]. IEEE Transactions on Vehicular Technology, 2023, 72(2): 2684–2688. doi: 10.1109/TVT.2022.3213334.
    [19] WANG Xinyi, FEI Zesong, and WU Qingqing. Integrated sensing and communication for RIS assisted backscatter systems[J]. IEEE Internet of Things Journal, 2023.
    [20] SHAIKH M H N, BOHARA V A, SRIVASTAVA A, et al. A downlink RIS-aided NOMA system with hardware impairments: Performance characterization and analysis[J]. IEEE Open Journal of Signal Processing, 2022, 3: 288–305. doi: 10.1109/OJSP.2022.3194416.
    [21] YE Yinghui, SHI Liqin, CHU Xiaoli, et al. Mutualistic cooperative ambient backscatter communications under hardware impairments[J]. IEEE Transactions on Communications, 2022, 70(11): 7656–7668. doi: 10.1109/TCOMM.2022.3201119.
    [22] XING Zhe, WANG Rui, WU Jun, et al. Achievable rate analysis and phase shift optimization on intelligent reflecting surface with hardware impairments[J]. IEEE Transactions on Wireless Communications, 2021, 20(9): 5514–5530. doi: 10.1109/TWC.2021.3068225.
    [23] XU Yongjun, XIE Hao, LI Dong, et al. Energy-efficient beamforming for heterogeneous industrial IoT networks with phase and distortion noises[J]. IEEE Transactions on Industrial Informatics, 2022, 18(11): 7423–7434. doi: 10.1109/TII.2022.3158612.
    [24] ZHOU Hu, KANG Xin, LIANG Yingchang, et al. Cooperative beamforming for reconfigurable intelligent surface-assisted symbiotic radios[J]. IEEE Transactions on Vehicular Technology, 2022, 71(11): 11677–11692. doi: 10.1109/TVT.2022.3190515.
    [25] ZHOU Gui, PAN Cunhua, REN Hong, et al. A framework of robust transmission design for IRS-aided MISO communications with imperfect cascaded channels[J]. IEEE Transactions on Signal Processing, 2020, 68: 5092–5106. doi: 10.1109/TSP.2020.3019666.
    [26] BEN-TAL A and NEMIROVSKIAEI A S. Lectures on modern convex optimization: Analysis, algorithms, and engineering applications[M]. Philadelphia, USA: SIAM, 2001: 436-437. doi: 10.1137/1.9780898718829.
    [27] ZOU Yuze, XU Jing, GONG Shimin, et al. Backscatter-aided hybrid data offloading for wireless powered edge sensor networks[C]. 2019 IEEE Global Communications Conference, Waikoloa, USA, 2019: 1–6.
    [28] LONG Ruizhe, GUO Huayan, and LIANG Yingchang. Symbiotic radio with full-duplex backscatter devices[C]. 2019 IEEE International Conference on Communications, Shanghai, China, 2019: 1–6.
    [29] JIA Xiaolun, ZHOU Xiangyun, NIYATO D, et al. Intelligent reflecting surface-assisted bistatic backscatter networks: Joint beamforming and reflection design[J]. IEEE Transactions on Green Communications and Networking, 2022, 6(2): 799–814. doi: 10.1109/TGCN.2021.3127190.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  655
  • HTML全文浏览量:  223
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-04
  • 修回日期:  2023-07-12
  • 网络出版日期:  2023-07-17
  • 刊出日期:  2024-03-27

目录

    /

    返回文章
    返回