高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分数阶光敏神经元的动力学特性分析及其同步研究

杨宁宁 孟诗悦 吴朝俊

杨宁宁, 孟诗悦, 吴朝俊. 分数阶光敏神经元的动力学特性分析及其同步研究[J]. 电子与信息学报, 2024, 46(3): 1138-1146. doi: 10.11999/JEIT230283
引用本文: 杨宁宁, 孟诗悦, 吴朝俊. 分数阶光敏神经元的动力学特性分析及其同步研究[J]. 电子与信息学报, 2024, 46(3): 1138-1146. doi: 10.11999/JEIT230283
YANG Ningning, MENG Shiyue, WU Chaojun. Dynamic Characteristics of Fractional-order Photosensitive Neuron and Its Coupling Synchronization[J]. Journal of Electronics & Information Technology, 2024, 46(3): 1138-1146. doi: 10.11999/JEIT230283
Citation: YANG Ningning, MENG Shiyue, WU Chaojun. Dynamic Characteristics of Fractional-order Photosensitive Neuron and Its Coupling Synchronization[J]. Journal of Electronics & Information Technology, 2024, 46(3): 1138-1146. doi: 10.11999/JEIT230283

分数阶光敏神经元的动力学特性分析及其同步研究

doi: 10.11999/JEIT230283
基金项目: 国家自然科学基金(51507134),陕西省自然科学基础研究计划 (2021JM-449, 2018JM5068)
详细信息
    作者简介:

    杨宁宁:女,硕士生导师,研究方向为非线性系统建模及控制

    孟诗悦:女,硕士生,研究方向为神经元模型系统特性分析与同步控制

    吴朝俊:男,硕士生导师,研究方向为非线性系统建模及控制

    通讯作者:

    孟诗悦 2039412773@qq.com

  • 中图分类号: TN60

Dynamic Characteristics of Fractional-order Photosensitive Neuron and Its Coupling Synchronization

Funds: The National Natural Science Foundation of China (51507134), The Natural Science Basic Research Program of Shaanxi Province (2021JM-449, 2018JM5068)
  • 摘要: 神经元是神经系统的基本单位,神经元模型的准确性影响对其本质特征的分析和理解。该文研究了由分数阶电容和电感构成的分数阶光敏FitzHugh-Nagumo(FHN)神经元电路。利用分岔图、相轨迹图和时间序列图分析了分数阶光敏神经元模型的动力学特性。研究发现,随着分数阶阶次的降低,分数阶光敏神经元的活跃度增加。当选取不同参数时,神经元系统可以诱发不同的放电模式,如周期放电态、混沌放电态和尖峰放电态。此外,利用电突触耦合的方式连接两个分数阶光敏神经元。通过调整耦合强度,可以实现分数阶光敏神经元系统之间的相位同步和完全同步。最后,采用dSPACE验证了外部光信号对神经元兴奋性的调制作用。
  • 图  1  分数阶光敏神经元电路示意图

    图  2  q=0.99时不同分岔参数下的分岔图

    图  3  q=0.99时参数B1取不同值时的相图及时间序列图

    图  4  q=0.99时参数ω取不同值时的相图及时间序列图

    图  5  q=0.9时不同分岔参数下的分岔图

    图  7  q=0.9时参数ω取不同值时的相图及时间序列图

    图  8  系统随阶次q变化的分岔图

    图  9  光敏神经元不同阶次对初值的同步

    图  10  基于dSPACE的工作实验平台

    图  11  q=0.99时参数B1取不同值时的相图及时间序列图

    图  12  q=0.9时参数B1取不同值时的相图及时间序列图

    图  13  q=0.99时参数ω取不同值时的相图及时间序列图

    图  14  q=0.9时参数ω取不同值时的相图及时间序列图

    图  15  光敏神经元不同阶次对初值的同步

  • [1] MA Jun, SONG Xinlin, JIN Wuyin, et al. Autapse-induced synchronization in a coupled neuronal network[J]. Chaos, Solitons & Fractals, 2015, 80: 31–38. doi: 10.1016/j.chaos.2015.02.005.
    [2] TORRES J J, ELICES I, and MARRO J. Efficient transmission of subthreshold signals in complex networks of spiking neurons[J]. PLoS One, 2015, 10(3): e0121156. doi: 10.1371/journal.pone.0121156.
    [3] BELYKH I, DE LANGE E, and HASLER M. Synchronization of bursting neurons: What matters in the network topology[J]. Physical Review Letters, 2005, 94(18): 188101. doi: 10.1103/PhysRevLett.94.188101.
    [4] WIG G S, SCHLAGGAR B L, and PETERSEN S E. Concepts and principles in the analysis of brain networks[J]. Annals of the New York Academy of Sciences, 2011, 1224(1): 126–146. doi: 10.1111/j.1749-6632.2010.05947.x.
    [5] IZHIKEVICH E M. Which model to use for cortical spiking neurons?[J]. IEEE Transactions on Neural Networks, 2004, 15(5): 1063–1070. doi: 10.1109/TNN.2004.832719.
    [6] OZER M and EKMEKCI N H. Effect of channel noise on the time-course of recovery from inactivation of sodium channels[J]. Physics Letters A, 2005, 338(2): 150–154. doi: 10.1016/j.physleta.2005.02.039.
    [7] HODGKIN A L and HUXLEY A F. A quantitative description of membrane current and its application to conduction and excitation in nerve[J]. The Journal of Physiology, 1952, 117(4): 500–544. doi: 10.1113/jphysiol.1952.sp004764.
    [8] FITZHUGH R. Impulses and physiological states in theoretical models of nerve membrane[J]. Biophysical Journal, 1961, 1(6): 445–466. doi: 10.1016/S0006-3495(61)86902-6.
    [9] HINDMARSH J L and ROSE R M. A model of neuronal bursting using three coupled first order differential equations[J]. Proceedings of the Royal Society B:Biological Sciences, 1984, 221(1222): 87–102. doi: 10.1098/rspb.1984.0024.
    [10] IZHIKEVICH E M. Simple model of spiking neurons[J]. IEEE Transactions on Neural Networks, 2003, 14(6): 1569–1572. doi: 10.1109/TNN.2003.820440.
    [11] 马军. 功能神经元建模及动力学若干问题[J]. 广西师范大学学报:自然科学版, 2022, 40(5): 307–323. doi: 10.16088/j.issn.1001-6600.2021122301.

    MA Jun. Dynamics and model approach for functional neurons[J]. Journal of Guangxi Normal University:Natural Science Edition, 2022, 40(5): 307–323. doi: 10.16088/j.issn.1001-6600.2021122301.
    [12] LIU Yong, XU Wanjiang, MA Jun, et al. A new photosensitive neuron model and its dynamics[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(9): 1387–1396. doi: 10.1631/FITEE.1900606.
    [13] YAO Zhao, SUN Kehui, and HE Shaobo. Firing patterns in a fractional-order FithzHugh–Nagumo neuron model[J]. Nonlinear Dynamics, 2022, 110(2): 1807–1822. doi: 10.1007/s11071-022-07690-2.
    [14] YANG Xin and ZHANG Guangjun. The synchronization behaviors of memristive synapse-coupled fractional-order neuronal networks[J]. IEEE Access, 2021, 9: 131844–131857. doi: 10.1109/ACCESS.2021.3115149.
    [15] ABDELATY A M, FOUDA M E, and ELTAWIL A M. On numerical approximations of fractional-order spiking neuron models[J]. Communications in Nonlinear Science and Numerical Simulation, 2022, 105: 106078. doi: 10.1016/j.cnsns.2021.106078.
    [16] 谢盈, 朱志刚, 张晓锋, 等. 光电流驱动下非线性神经元电路的放电模式控制[J]. 物理学报, 2021, 70(21): 210502. doi: 10.7498/aps.70.20210676.

    XIE Ying, ZHU Zhigang, ZHANG Xiaofeng, et al. Control of firing mode in nonlinear neuron circuit driven by photocurrent[J]. Acta Physica Sinica, 2021, 70(21): 210502. doi: 10.7498/aps.70.20210676.
    [17] WESTERLUND S and EKSTAM L. Capacitor theory[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1994, 1(5): 826–839. doi: 10.1109/94.326654.
    [18] OLDHAM K B and SPANIER J. The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order[M]. Amsterdam: Elsevier, 1974.
    [19] GAO Guanghua, SUN Zhizhong, and ZHANG Hongwei. A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications[J]. Journal of Computational Physics, 2014, 259: 33–50. doi: 10.1016/j.jcp.2013.11.017.
  • 加载中
图(15)
计量
  • 文章访问数:  524
  • HTML全文浏览量:  244
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-17
  • 修回日期:  2023-08-02
  • 录用日期:  2023-08-15
  • 网络出版日期:  2023-08-22
  • 刊出日期:  2024-03-27

目录

    /

    返回文章
    返回