高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

正交约束域适应的跨工况滚动轴承剩余使用寿命预测方法

韩延 林志超 黄庆卿 向敏 文瑞 张焱

韩延, 林志超, 黄庆卿, 向敏, 文瑞, 张焱. 正交约束域适应的跨工况滚动轴承剩余使用寿命预测方法[J]. 电子与信息学报, 2024, 46(3): 1043-1050. doi: 10.11999/JEIT230274
引用本文: 韩延, 林志超, 黄庆卿, 向敏, 文瑞, 张焱. 正交约束域适应的跨工况滚动轴承剩余使用寿命预测方法[J]. 电子与信息学报, 2024, 46(3): 1043-1050. doi: 10.11999/JEIT230274
HAN Yan, LIN Zhichao, HUANG Qingqing, XIANG Min, WEN Rui, ZHANG Yan. A Domain Adaptive Method with Orthogonal Constraint for Predicting the Remaining Useful Life of Rolling Bearings under Cross Working Conditions[J]. Journal of Electronics & Information Technology, 2024, 46(3): 1043-1050. doi: 10.11999/JEIT230274
Citation: HAN Yan, LIN Zhichao, HUANG Qingqing, XIANG Min, WEN Rui, ZHANG Yan. A Domain Adaptive Method with Orthogonal Constraint for Predicting the Remaining Useful Life of Rolling Bearings under Cross Working Conditions[J]. Journal of Electronics & Information Technology, 2024, 46(3): 1043-1050. doi: 10.11999/JEIT230274

正交约束域适应的跨工况滚动轴承剩余使用寿命预测方法

doi: 10.11999/JEIT230274
基金项目: 国家重点研发计划(2022YFE0114300),重庆市教委科学技术研究项目(KJQN202100612),重庆市博士后科学基金(cstc2021jcyj-bshX0094)
详细信息
    作者简介:

    韩延:男,讲师,研究方向为装备智能运维、深度学习、边缘计算

    林志超:男,硕士生,研究方向为装备智能运维与健康管理

    黄庆卿:男,副教授,研究方向为工业物联网、边缘计算、机械故障预测与健康管理

    向敏:男,教授,研究方向为工业测控和工业物联网等

    文瑞:男,硕士生,研究方向为装备智能运维与健康管理

    张焱:男,副教授,研究方向为工业互联网与边缘智能、工业大数据等

    通讯作者:

    黄庆卿 huangqq@cqupt.edu.cn

  • 中图分类号: TN911.7; TH165.3

A Domain Adaptive Method with Orthogonal Constraint for Predicting the Remaining Useful Life of Rolling Bearings under Cross Working Conditions

Funds: National Key Research and Development Program of China (2022YFE0114300), Science and Technology Research Program of Chongqing Municipal Education Commission (KJQN202100612), Chongqing Postdoctoral Science Foundation (cstc2021jcyj-bshX0094)
  • 摘要: 针对跨工况轴承剩余使用寿命(RUL)预测模型的决策边界不明显、特征可辨识性低的问题,该文提出一种正交约束的最大分类器差异方法(MCD_OC)。首先,将采集的轴承原始振动信号进行快速傅里叶变换,得到振动信号的频域信号作为模型的输入;然后,通过卷积神经网络(CNN)和门控循环神经网络(GRU)提取轴承信号的深层时空特征,利用最大分类器差异将源域和目标域特征对齐,并对目标域轴承深层特征进行正交约束,增大无标签目标域样本特征之间的可辨识性;最后,基于轴承寿命数据集开展了跨工况轴承寿命预测对比实验,对该文所提方法进行评估,并在多组实验中取得最优结果。
  • 图  1  普通的域适应方法和最大分类器差异

    图  2  对目标域特征正交约束增大特征差异

    图  3  MCD_OC 网络结构

    图  4  正交约束域适应的跨工况滚动轴承剩余使用寿命预测方法流程

    图  5  轴承2-1的时域信号和归一化后的频域信号

    图  6  不同方法在不同任务下的轴承寿命预测结果对比

    表  1  轴承运行的3种不同工况

    变量工况1工况2工况3
    压力(N)400042005000
    转速(r/min)180016501500
    下载: 导出CSV

    表  2  MCD_OC试验数据集

    任务源域训练集目标域训练集测试集
    工况1→工况2(C12)轴承1-1~1-7轴承2-1,2-2轴承2-6
    工况1→工况3(C13)轴承1-1~1-7轴承3-1,3-2轴承3-3
    工况2→工况1(C21)轴承2-1~2-7轴承1-1,1-2轴承1-7
    工况2→工况3(C23)轴承2-1~2-7轴承3-1,3-2轴承3-3
    工况3→工况1(C31)轴承3-1~3-3轴承1-1,1-2轴承1-7
    工况3→工况2(C32)轴承3-1~3-3轴承2-1,2-2轴承2-6
    下载: 导出CSV

    表  3  模型参数

    网络层参数激活函数
    卷积层1, BN卷积核大小7×1,数量 80,步长1ReLU
    最大池化层1大小 8×1,步长8\
    卷积层2, BN卷积核大小5×1,数量160,步长1ReLU
    最大池化层2大小8×1,步长1\
    卷积层3, BN卷积核大小3×1,数量 320,步长1ReLU
    最大池化层3大小4×1,步长1\
    GRU输出维度 1440\
    全连接层1神经元个数128,Dropout 0.5\
    全连接层2神经元个数32,Dropout 0.5\
    全连接层3神经元个数1\
    下载: 导出CSV

    表  4  MCD_OC和对比模型的预测结果

    方法评价指标C12C13C21C23C31C32平均值
    DDCMAE0.1790.1180.2240.2120.1600.3070.200
    RMSE0.2180.1360.2580.2460.2080.3540.237
    DANNMAE0.1200.0700.2710.2270.1660.4130.211
    RMSE0.1490.0920.3110.2570.2130.4420.244
    CORALMAE0.1460.0650.2300.1980.1620.4140.202
    RMSE0.1670.0800.2690.2380.2340.4350.237
    DDC_OCMAE0.1740.0800.1840.1950.1600.3230.186
    RMSE0.2090.1160.2230.2190.2100.3630.223
    MCD_DAMAE0.1250.0680.2290.2170.1650.3850.198
    RMSE0.1500.0860.2740.2530.2190.4260.235
    MCD_OCMAE0.1170.0840.1630.1780.1600.2020.151
    RMSE0.1440.1060.2200.2160.2080.2340.188
    下载: 导出CSV
  • [1] YAO Siya, KANG Qi, ZHOU Mengchu, et al. A survey of transfer learning for machinery diagnostics and prognostics[J]. Artificial Intelligence Review, 2023, 56(4): 2871–2922. doi: 10.1007/s10462-022-10230-4.
    [2] 王玉静, 康守强, 张云, 等. 基于集合经验模态分解敏感固有模态函数选择算法的滚动轴承状态识别方法[J]. 电子与信息学报, 2014, 36(3): 595–600. doi: 10.3724/SP.J.1146.2013.00434.

    WANG Yujing, KANG Shouqiang, ZHANG Yun, et al. Condition recognition method of rolling bearing based on ensemble empirical mode decomposition sensitive intrinsic mode function selection algorithm[J]. Journal of Electronics &Information Technology, 2014, 36(3): 595–600. doi: 10.3724/SP.J.1146.2013.00434.
    [3] 邵海东, 颜深, 肖一鸣, 等. 时变转速下基于改进图注意力网络的轴承半监督故障诊断[J]. 电子与信息学报, 2023, 45(5): 1550–1558. doi: 10.11999/JEIT220303.

    SHAO Haidong, YAN Shen, XIAO Yiming, et al. Semi-supervised bearing fault diagnosis using improved graph attention network under time-varying speeds[J]. Journal of Electronics &Information Technology, 2023, 45(5): 1550–1558. doi: 10.11999/JEIT220303.
    [4] 王玉静, 李少鹏, 康守强, 等. 结合CNN和LSTM的滚动轴承剩余使用寿命预测方法[J]. 振动、测试与诊断, 2021, 41(3): 439–446. doi: 10.16450/j.cnki.issn.1004-6801.2021.03.003.

    WANG Yujing, LI Shaopeng, KANG Shouqiang, et al. Method of predicting remaining useful life of rolling bearing combining CNN and LSTM[J]. Journal of Vibration,Measurement &Diagnosis, 2021, 41(3): 439–446. doi: 10.16450/j.cnki.issn.1004-6801.2021.03.003.
    [5] YANG Chuangyan, MA Jun, WANG Xiaodong, et al. A novel based-performance degradation indicator RUL prediction model and its application in rolling bearing[J]. ISA Transactions, 2022, 121: 349–364. doi: 10.1016/j.isatra.2021.03.045.
    [6] DING Ning, LI Hulin, YIN Zhongwei, et al. Journal bearing seizure degradation assessment and remaining useful life prediction based on long short-term memory neural network[J]. Measurement, 2020, 166: 108215. doi: 10.1016/j.measurement.2020.108215.
    [7] 王新刚, 韩凯忠, 王超, 等. 基于迁移学习的轴承剩余使用寿命预测方法[J]. 东北大学学报:自然科学版, 2021, 42(5): 665–672. doi: 10.12068/j.issn.1005-3026.2021.05.009.

    WANG Xingang, HAN Kaizhong, WANG Chao, et al. Bearing remaining useful life prediction method based on transfer learning[J]. Journal of Northeastern University:Natural Science, 2021, 42(5): 665–672. doi: 10.12068/j.issn.1005-3026.2021.05.009.
    [8] 雷亚国, 杨彬, 杜兆钧, 等. 大数据下机械装备故障的深度迁移诊断方法[J]. 机械工程学报, 2019, 55(7): 1–8. doi: 10.3901/JME.2019.07.001.

    LEI Yaguo, YANG Bin, DU Zhaojun, et al. Deep transfer diagnosis method for machinery in big data era[J]. Journal of Mechanical Engineering, 2019, 55(7): 1–8. doi: 10.3901/JME.2019.07.001.
    [9] CHENG Han, KONG Xianguang, CHEN Gaige, et al. Transferable convolutional neural network based remaining useful life prediction of bearing under multiple failure behaviors[J]. Measurement, 2021, 168: 108286. doi: 10.1016/j.measurement.2020.108286.
    [10] HU Tao, GUO Yiming, GU Liudong, et al. Remaining useful life prediction of bearings under different working conditions using a deep feature disentanglement based transfer learning method[J]. Reliability Engineering & System Safety, 2022, 219: 108265. doi: 10.1016/j.ress.2021.108265.
    [11] CHENG Han, KONG Xianguang, WANG Qibin, et al. The two-stage RUL prediction across operation conditions using deep transfer learning and insufficient degradation data[J]. Reliability Engineering & System Safety, 2022, 225: 108581. doi: 10.1016/j.ress.2022.108581.
    [12] ZOU Yisheng, LI Zhixuan, LIU Yongzhi, et al. A method for predicting the remaining useful life of rolling bearings under different working conditions based on multi-domain adversarial networks[J]. Measurement, 2022, 188: 110393. doi: 10.1016/j.measurement.2021.110393.
    [13] SAITO K, WATANABE K, USHIKU Y, et al. Maximum classifier discrepancy for unsupervised domain adaptation[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 3723–3732.
    [14] BOUSMALIS K, TRIGEORGIS G, SILBERMAN N, et al. Domain separation networks[C]. The 30th International Conference on Neural Information Processing Systems, Barcelona, Spain, 2016: 343–351.
    [15] NECTOUX P, GOURIVEAU R, MEDJAHER K, et al. PRONOSTIA: An experimental platform for bearings accelerated degradation tests[C]. The IEEE International Conference on Prognostics and Health Management, Denver, USA, 2012: 1–8.
    [16] TZENG E, HOFFMAN J, ZHANG Ning, et al. Deep domain confusion: Maximizing for domain invariance[J]. arXiv preprint arXiv: 1412.3474, 2014.
    [17] GANIN Y, USTINOVA E, AJAKAN H, et al. Domain-adversarial training of neural networks[J]. The Journal of Machine Learning Research, 2016, 17(1): 2096–2030.
    [18] SUN Baochen and SAENKO K. Deep CORAL: Correlation alignment for deep domain adaptation[C]. The European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 443–450.
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  290
  • HTML全文浏览量:  232
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-17
  • 修回日期:  2023-07-14
  • 网络出版日期:  2023-07-21
  • 刊出日期:  2024-03-27

目录

    /

    返回文章
    返回