高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多维扩展的正交时序复用波形框架及其性能分析

王震铎 谭正锋 孙溶辰

王震铎, 谭正锋, 孙溶辰. 基于多维扩展的正交时序复用波形框架及其性能分析[J]. 电子与信息学报, 2024, 46(3): 826-834. doi: 10.11999/JEIT230248
引用本文: 王震铎, 谭正锋, 孙溶辰. 基于多维扩展的正交时序复用波形框架及其性能分析[J]. 电子与信息学报, 2024, 46(3): 826-834. doi: 10.11999/JEIT230248
WANG Zhenduo, TAN Zhengfeng, SUN Rongchen. Orthogonal Time Sequency Multiplexing Waveform Framework Based on Multi-dimensional Extension and Its Performance Analysis[J]. Journal of Electronics & Information Technology, 2024, 46(3): 826-834. doi: 10.11999/JEIT230248
Citation: WANG Zhenduo, TAN Zhengfeng, SUN Rongchen. Orthogonal Time Sequency Multiplexing Waveform Framework Based on Multi-dimensional Extension and Its Performance Analysis[J]. Journal of Electronics & Information Technology, 2024, 46(3): 826-834. doi: 10.11999/JEIT230248

基于多维扩展的正交时序复用波形框架及其性能分析

doi: 10.11999/JEIT230248
基金项目: 国家自然科学基金(62001138),黑龙江省自然科学基金(LH2021F009),中国博士后科学基金(2020M670885)
详细信息
    作者简介:

    王震铎:男,副教授,研究方向为无线通信理论及其关键技术

    谭正锋:男,硕士生,研究方向为变换域通信系统理论

    孙溶辰:男,副教授,研究方向为信道测量与建模

    通讯作者:

    孙溶辰 rongchensun@hrbeu.edu.cn

  • 中图分类号: TN914.3

Orthogonal Time Sequency Multiplexing Waveform Framework Based on Multi-dimensional Extension and Its Performance Analysis

Funds: The National Natural Science Foundation of China (62001138), Heilongjiang Provincial Natural Science Foundation of China (LH2021F009), China Postdoctoral Science Foundation Funded Project (2020M670885)
  • 摘要: 正交时序复用(OTSM)是一种适用于高速移动场景的低复杂度调制方法。然而,单一的波形设计方法难以满足多样化的应用需求和性能需求。因此,该文基于加权分数傅里叶变换(WFRFT)提出了加权分数沃尔什-哈达玛变换(WFRWHT),并提出了多维扩展的一体化的加权分数傅里叶变换-加权分数沃尔什哈达玛变换-正交时序复用(WFRFT-WFRWHT-OTSM)波形框架。通过对2维参数的灵活配置,该框架可退化为OTSM、正交时频空、混合载波、正交频分复用和单载波等波形,同时研究了采用高斯-赛德尔(GS)迭代均衡时一体化WFRFT-WFRWHT-OTSM波形在时延-多普勒信道下的误码率(BER)性能以及峰均功率比(PAPR)性能。仿真结果表明,在不同时延-多普勒信道下,该框架可通过改变WFRFT和WFRWHT阶次实现更优的BER和PAPR性能。
  • 图  1  WFRFT-WFRWHT-OTSM系统框架

    图  2  WFRFT-WFRWHT-OTSM波形融合机理

    图  3  OTSM波形在不同迭代次数时对应的误码率性能

    图  4  WFRWHT-OTSM波形在时延-多普勒信道下的误码率性能

    图  5  WFRFT-OTSM波形在时延-多普勒信道下的误码率性能

    图  6  WFRFT-WFRWHT-OTSM在时延-多普勒信道下的误码率性能

    图  7  WFRFT-WFRWHT-OTSM波形的误码率曲线

    图  8  WFRFT-WFRWHT-OTSM的PAPR性能

    表  1  WFRFT-WFRWHT-OTSM的参数与表征波形关系

    变量参数载波体制
    $\alpha = 0$, $\beta = 0$OTSM
    $\alpha = 0$, $0 < \beta < 1$WFRWHT-OTSM
    $\alpha = 0$, $\beta = {\text{1}}$SC
    $0 < \alpha < {\text{1}}$, $\beta = 0$WFRFT-OTSM
    $0 < \alpha < {\text{1}}$, $0 < \beta < 1$WFRFT-WFRWHT-OTSM
    $0 < \alpha < {\text{1}}$, $\beta = {\text{1}}$WFRFT-OTFS
    $\alpha = {\text{1}}$, $\beta = 0$DFT-OTSM
    $\alpha = {\text{1}}$, $0 < \beta < 1$WFRWHT-OTFS
    $\alpha = {\text{1}}$, $\beta = {\text{1}}$OTFS
    下载: 导出CSV
  • [1] LIU An, HUANG Zhe, LI Min, et al. A survey on fundamental limits of integrated sensing and communication[J]. IEEE Communications Surveys & Tutorials, 2022, 24(2): 994–1034. doi: 10.1109/COMST.2022.3149272.
    [2] HADANI R, RAKIB S, TSATSANIS M, et al. Orthogonal time frequency space modulation[C]. 2017 IEEE Wireless Communications and Networking Conference, San Francisco, USA, 2017: 1–6.
    [3] RAVITEJA P, HONG Yi, VITERBO E, et al. Practical pulse-shaping waveforms for reduced-cyclic-prefix OTFS[J]. IEEE Transactions on Vehicular Technology, 2019, 68(1): 957–961. doi: 10.1109/TVT.2018.2878891.
    [4] WEI Zhiqiang, YUAN Weijie, LI Shuangyang, et al. Orthogonal time-frequency space modulation: A promising next-generation waveform[J]. IEEE Wireless Communications, 2021, 28(4): 136–144. doi: 10.1109/MWC.001.2000408.
    [5] WANG Zhenduo, LIU Zhipeng, SUN Zhiguo, et al. BER performance analysis of OTFS systems with power allocation[J]. China Communications, 2023, 20(1): 24–35. doi: 10.23919/JCC.2023.01.003.
    [6] ZOU Tingting, XU Wenjun, GAO Hui, et al. Low-complexity linear equalization for OTFS systems with rectangular waveforms[C]. 2021 IEEE International Conference on Communications Workshops (ICC Workshops), Montreal, Canada, 2021: 1–6.
    [7] 蒋占军, 刘庆达, 张鈜, 等. 高速移动通信系统中OTFS分数多普勒信道估计加窗研究[J]. 电子与信息学报, 2022, 44(2): 646–653. doi: 10.11999/JEIT210561.

    JIANG Zhanjun, LIU Qingda, ZHANG Hong, et al. Study on OTFS fractional Doppler channel estimation and windowing in high-speed mobile communication systems[J]. Journal of Electronics &Information Technology, 2022, 44(2): 646–653. doi: 10.11999/JEIT210561.
    [8] 蒋占军, 刘庆达. 高速移动通信系统中OTFS信道估计算法研究[J]. 电子与信息学报, 2021, 43(10): 2878–2885. doi: 10.11999/JEIT200683.

    JIANG Zhanjun and LIU Qingda. Study on OTFS channel estimation algorithms in high-speed mobile communication systems[J]. Journal of Electronics &Information Technology, 2021, 43(10): 2878–2885. doi: 10.11999/JEIT200683.
    [9] WANG Zhenduo, CHEN Xingyu, SUN Zhiguo, et al. On the performance of nonlinear corrective active constellation expansion in OTFS systems[J]. IEEE Communications Letters, 2022, 26(6): 1418–1422. doi: 10.1109/LCOMM.2022.3165191.
    [10] QU Huiyang, LIU Guanghui, ZHANG Lei, et al. Low-complexity symbol detection and interference cancellation for OTFS system[J]. IEEE Transactions on Communications, 2021, 69(3): 1524–1537. doi: 10.1109/TCOMM.2020.3043007.
    [11] THAJ T, VITERBO E, and HONG Yi. Orthogonal time sequency multiplexing modulation: Analysis and low-complexity receiver design[J]. IEEE Transactions on Wireless Communications, 2021, 20(12): 7842–7855. doi: 10.1109/TWC.2021.3088479.
    [12] 李国军, 龙锟, 叶昌荣, 等. 高速移动环境下低复杂度OTSM迭代rake均衡方法[J]. 通信学报, 2022, 43(10): 86–93. doi: 10.11959/j.issn.1000-436x.2022203.

    LI Guojun, LONG Kun, YE Changrong, et al. Iterative rake equalization method for low-complexity OTSM in high-speed mobile environment[J]. Journal on Communications, 2022, 43(10): 86–93. doi: 10.11959/j.issn.1000-436x.2022203.
    [13] 李国军, 龙锟, 叶昌荣, 等. 高速移动环境下OTSM迭代检测算法研究[J]. 电子与信息学报, 2023, 45(6): 2098–2104. doi: 10.11999/JEIT220541.

    LI Guojun, LONG Kun, YE Changrong, et al. Research on OTSM iterative detection algorithm in high-speed mobile environment[J]. Journal of Electronics &Information Technology, 2023, 45(6): 2098–2104. doi: 10.11999/JEIT220541.
    [14] MEI Lin, SHA Xuejun, and ZHANG Naitong. The approach to carrier scheme convergence based on 4-weighted fractional Fourier transform[J]. IEEE Communications Letters, 2010, 14(6): 503–505. doi: 10.1109/LCOMM.2010.06.092413.
    [15] MEI Lin, XIAO Jiang, FANG Xiaojie, et al. Hybrid carrier and STBC based impulsive noise suppression for substation communications[C]. 2020 IEEE 92nd Vehicular Technology Conference (VTC2020-Fall), Victoria, Canada, 2020: 1–5.
    [16] MEI Lin, FANG Xiaojie, LIN Xu, et al. A WFRFT-based cyclic prefix-free hybrid-carrier FDE scheme[C]. 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), Antwerp, Belgium, 2020: 1–6.
    [17] WANG Zhenduo, CHEN Xingyu, and NING Xiaoyan. BER analysis of integrated WFRFT-OTFS waveform framework over static multipath channels[J]. IEEE Communications Letters, 2021, 25(3): 754–758. doi: 10.1109/LCOMM.2020.3040822.
    [18] MALLAIAH R and MANI V V. A novel OTFS system based on DFrFT-OFDM[J]. IEEE Wireless Communications Letters, 2022, 11(6): 1156–1160. doi: 10.1109/LWC.2022.3159534.
    [19] LIN Xu, MEI Lin, LABEAU F, et al. Efficient fast-convolution based hybrid carrier system[J]. IEEE Transactions on Wireless Communications, 2022, 21(5): 3508–3522. doi: 10.1109/TWC.2021.3122880.
    [20] VAN LOAN C F. The ubiquitous Kronecker product[J]. Journal of Computational and Applied Mathematics, 2000, 123(1/2): 85–100. doi: 10.1016/S0377-0427(00)00393-9.
    [21] THAJ T and VITERBO E. Low complexity iterative rake decision feedback equalizer for zero-padded OTFS systems[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 15606–15622. doi: 10.1109/TVT.2020.3044276.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  373
  • HTML全文浏览量:  218
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-11
  • 修回日期:  2023-07-29
  • 网络出版日期:  2023-08-10
  • 刊出日期:  2024-03-27

目录

    /

    返回文章
    返回