高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于非正交多址接入的星空地多用户认知网络性能研究

刘瑞 郭克锋 朱诗兵 李长青 李可盈

刘瑞, 郭克锋, 朱诗兵, 李长青, 李可盈. 基于非正交多址接入的星空地多用户认知网络性能研究[J]. 电子与信息学报, 2024, 46(6): 2488-2496. doi: 10.11999/JEIT230212
引用本文: 刘瑞, 郭克锋, 朱诗兵, 李长青, 李可盈. 基于非正交多址接入的星空地多用户认知网络性能研究[J]. 电子与信息学报, 2024, 46(6): 2488-2496. doi: 10.11999/JEIT230212
LIU Rui, GUO Kefeng, ZHU Shibing, LI Changqing, LI Keying. Performance Analysis of Satellite-Aerial-Terrestrial Multiple Primary Users Cognitive Networks Based on NOMA[J]. Journal of Electronics & Information Technology, 2024, 46(6): 2488-2496. doi: 10.11999/JEIT230212
Citation: LIU Rui, GUO Kefeng, ZHU Shibing, LI Changqing, LI Keying. Performance Analysis of Satellite-Aerial-Terrestrial Multiple Primary Users Cognitive Networks Based on NOMA[J]. Journal of Electronics & Information Technology, 2024, 46(6): 2488-2496. doi: 10.11999/JEIT230212

基于非正交多址接入的星空地多用户认知网络性能研究

doi: 10.11999/JEIT230212
基金项目: 国家自然科学基金(6201517)
详细信息
    作者简介:

    刘瑞:男,博士生,研究方向为航天通信及非正交多址接入技术等

    郭克锋:男,讲师,研究方向为卫星通信、非正交多址接入技术和物理层安全等

    朱诗兵:男,教授,研究方向为航天通信、自组网及网络安全等

    李长青:男,副教授,研究方向为航天通信及无线通信优化等

    李可盈:女,博士生,研究方向为航天通信及物理层安全等

    通讯作者:

    郭克锋 guokefeng.cool@163.com

  • 11) 通过反馈和培训可以达到完美的CSI,这一方法已在DVB - S2中应用。2) 用户太多会导致干扰大或接收机复杂度高,因此本文采用两用户对方案,以平衡性能增益和通信成本。
  • 中图分类号: TN927.2

Performance Analysis of Satellite-Aerial-Terrestrial Multiple Primary Users Cognitive Networks Based on NOMA

Funds: The National Natural Science Foundation of China (6201517)
  • 摘要: 卫星通信(SatCom)因其强大的生存能力和无缝覆盖的独特优势,能够弥补地面通信网络受地形限制、覆盖范围小等短板,在当前和未来的无线通信系统中具有重要的地位。此外,空中辅助通信由于其在星地网中的灵活性和可扩展性,具有很高的研究价值。为克服星空地网络(ISATN)中频谱短缺问题,认知无线电(CR)和非正交多址接入(NOMA)被用于提高频谱利用率和传输性能。因此,该文研究了基于NOMA的星空地认知网络(CISATN)的性能,考虑多用户场景,分别得到了主网络和次级网络的中断概率(OP)的准确表达式和高信噪比下的渐进表达式,并给出了这两个网络的分集增益。最后,通过蒙特卡罗仿真验证了理论推导的正确性,并分析了关键变量对系统指标的影响。
  • 图  1  系统模型

    图  2  PN的OP与不同天线个数$N$的关系

    图  3  PN的OP与不同功率分配系数$\alpha $的关系

    图  4  PN的OP与不同的目标速率${R_1}$和${R_2}$的关系

    图  5  SN的OP与不同天线个数$N$的关系

    表  1  仿真参数

    参数数值
    卫星GEO
    ${f_{{\text{ab}}}}$2 GHz
    $\left( {{\vartheta _\zeta },\sigma _\zeta ^2} \right)$(–3.125,1.591)
    $B$15 MHz
    ${\theta _{3{\text{dB}}}}$0.4°
    ${\varepsilon _{\max }}$48 dB
    ${\ell _{\max }}$4 dB
    $T$300K
    ${\sigma ^2}$1
    Frequent Heavy Shadowing (FHS)(1,0.063,0.0007)
    Average Shadowing (AS)(5,0251,0.279)
    Infrequent Light Shadowing (ILS)(10,0.158,1.29)
    下载: 导出CSV
  • [1] GUO Kefeng, LIU Rui, DONG Chao, et al. Ergodic capacity of NOMA-based overlay cognitive integrated satellite-UAV-terrestrial networks[J]. Chinese Journal of Electronics, 2023, 32(2): 273–282. doi: 10.23919/cje.2021.00.316.
    [2] LIU Rui, GUO Kefeng, AN Kang, et al. Resource allocation for NOMA-enabled cognitive satellite-UAV-terrestrial networks with imperfect CSI[J]. IEEE Transactions on Cognitive Communications and Networking.
    [3] GUO Kefeng, AN Kang, ZHANG Bangning, et al. Physical layer security for multiuser satellite communication systems with threshold-based scheduling scheme[J]. IEEE Transactions on Vehicular Technology, 2020, 69(5): 5129–5141. doi: 10.1109/TVT.2020.2979496.
    [4] DONG Chao, SHEN Yun, QU Yuben, et al. UAVs as an intelligent service: Boosting edge intelligence for air-ground integrated networks[J]. IEEE Network, 2021, 35(4): 167–175. doi: 10.1109/MNET.011.2000651.
    [5] CHEN Jiaxin, WU Qihui, XU Yuhua, et al. Spectrum allocation for task-driven UAV communication networks exploiting game theory[J]. IEEE Wireless Communications, 2021, 28(4): 174–181. doi: 10.1109/MWC.001.2000444.
    [6] LI Xingwang, WANG Qunshu, LIU Yuanwei, et al. UAV-aided multi-way NOMA networks with residual hardware impairments[J]. IEEE Wireless Communications Letters, 2020, 9(9): 1538–1542. doi: 10.1109/LWC.2020.2996782.
    [7] WU Qihui, DING Guoru, XU Yuhua, et al. Cognitive internet of things: A new paradigm beyond connection[J]. IEEE Internet of Things Journal, 2014, 1(2): 129–143. doi: 10.1109/JIOT.2014.2311513.
    [8] CHEN Jiaxin, CHEN Ping, WU Qihui, et al. A game-theoretic perspective on resource management for large-scale UAV communication networks[J]. China Communications, 2021, 18(1): 70–87. doi: 10.23919/JCC.2021.01.007.
    [9] ZHOU Feng, LI Xingwang, ALAZAB Mamoun, et al. Secrecy performance for RIS-based integrated satellite vehicle networks with a UAV relay and MRC eavesdropping[J]. IEEE Transactions on Intelligent Vehicles, 2023, 8(2): 1676–1685. doi: 10.1109/TIV.2022.3225466.
    [10] LIN Zhi, LIN Min, CHAMPAGNE B, et al. Secrecy-energy efficient hybrid beamforming for satellite-terrestrial integrated networks[J]. IEEE Transactions on Communications, 2021, 69(9): 6345–6360. doi: 10.1109/TCOMM.2021.3088898.
    [11] LIN Zhi, LIN Min, ZHU Weiping, et al. Robust secure beamforming for wireless powered cognitive satellite-terrestrial networks[J]. IEEE Transactions on Cognitive Communications and Networking, 2021, 7(2): 567–580. doi: 10.1109/TCCN.2020.3016096.
    [12] GUO Kefeng, AN Kang, ZHANG Bangning, et al. On the performance of the uplink satellite multiterrestrial relay networks with hardware impairments and interference[J]. IEEE Systems Journal, 2019, 13(3): 2297–2308. doi: 10.1109/JSYST.2019.2901800.
    [13] 林志, 林敏, 黄清泉, 等. 能效最大化准则下的星地融合网络的安全波束成形算法[J]. 电子学报, 2022, 50(1): 124–134. doi: 10.12263/DZXB.20200944.

    LIN Zhi, LIN Min, HUANG Qingquan, et al. Secure beamforming algorithm in satellite-terrestrial integrated networks with energy efficiency maximization criterion[J]. Acta Electronica Sinica, 2022, 50(1): 124–134. doi: 10.12263/DZXB.20200944.
    [14] BANKEY V and UPADHYAY P K. Physical layer security of multiuser multirelay hybrid satellite-terrestrial relay networks[J]. IEEE Transactions on Vehicular Technology, 2019, 68(3): 2488–2501. doi: 10.1109/TVT.2019.2893366.
    [15] GUO Kefeng, LIN Min, ZHANG Bangning, et al. On the performance of LMS communication with hardware impairments and interference[J]. IEEE Transactions on Communications, 2019, 67(2): 1490–1505. doi: 10.1109/TCOMM.2018.2878848.
    [16] HUANG Qingquan, LIN Min, ZHU Weiping, et al. Performance analysis of integrated satellite-terrestrial multiantenna relay networks with multiuser scheduling[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(4): 2718–2731. doi: 10.1109/TAES.2019.2952698.
    [17] XIAO Zhenyu, ZHU Lipeng, and XIA Xianggen. UAV communications with millimeter-wave beamforming: Potentials, scenarios, and challenges[J]. China Communications, 2020, 17(9): 147–166. doi: 10.23919/JCC.2020.09.012.
    [18] HUANG Qingquan, LIN Min, WANG Junbo, et al. Energy efficient beamforming schemes for satellite-aerial-terrestrial networks[J]. IEEE Transactions on Communications, 2020, 68(6): 3863–3875. doi: 10.1109/TCOMM.2020.2978044.
    [19] LIN Zhi, LIN Min, DE COLA T, et al. Supporting IoT with rate-splitting multiple access in satellite and aerial-integrated networks[J]. IEEE Internet of Things Journal, 2021, 8(14): 11123–11134. doi: 10.1109/JIOT.2021.3051603.
    [20] ZHANG Xiaokai, ZHANG Bangning, AN Kang, et al. Stochastic geometry-based analysis of cache-enabled hybrid satellite-aerial-terrestrial networks with non-orthogonal multiple access[J]. IEEE Transactions on Wireless Communications, 2022, 21(2): 1272–1287. doi: 10.1109/TWC.2021.3103499.
    [21] HUANG Qingquan, LIN Min, ZHU Weiping, et al. Uplink massive access in mixed RF/FSO satellite-aerial-terrestrial networks[J]. IEEE Transactions on Communications, 2021, 69(4): 2413–2426. doi: 10.1109/TCOMM.2021.3049364.
    [22] RUAN Yuhan, LI Yongzhao, WANG Chen-Xiang, et al. Energy efficient adaptive transmissions in integrated satellite-terrestrial networks with SER constraints[J]. IEEE Transactions on Wireless Communications, 2018, 17(1): 210–222. doi: 10.1109/TWC.2017.2764472.
    [23] RUAN Yuhan, LI Yongzhao, WANG Chengxiang, et al. Power allocation in cognitive satellite-vehicular networks from energy-spectral efficiency tradeoff perspective[J]. IEEE Transactions on Cognitive Communications and Networking, 2019, 5(2): 318–329. doi: 10.1109/TCCN.2019.2905199.
    [24] AN Kang, OUYANG Jian, LIN Min, et al. Outage analysis of multi-antenna cognitive hybrid satellite-terrestrial relay networks with beamforming[J]. IEEE Communications Letters, 2015, 19(7): 1157–1160. doi: 10.1109/LCOMM.2015.2428256.
    [25] SHARMA P K, UPADHYAY P K, DA COSTA D B, et al. Performance analysis of overlay spectrum sharing in hybrid satellite-terrestrial systems with secondary network selection[J]. IEEE Transactions on Wireless Communications, 2017, 16(10): 6586–6601. doi: 10.1109/TWC.2017.2725950.
    [26] LIN Min, LIN Zhi, ZHU Weiping, et al. Joint beamforming for secure communication in cognitive satellite terrestrial networks[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(5): 1017–1029. doi: 10.1109/JSAC.2018.2832819.
    [27] SHUAI Haifeng, GUO Kefeng, AN Kang, et al. Joint impacts of non-ideal system limitations on the performance of NOMA-based SatCom networks[J]. IEEE Transactions on Vehicular Technology, 2023, 72(3): 4091–4096. doi: 10.1109/TVT.2022.3221071.
    [28] JIA Min, GAO Qiling, GUO Qing, et al. Power multiplexing NOMA and bandwidth compression for satellite-terrestrial networks[J]. IEEE Transactions on Vehicular Technology, 2019, 68(11): 11107–11117. doi: 10.1109/TVT.2019.2944077.
    [29] LIN Zhi, LIN Min, WANG Junbo, et al. Joint beamforming and power allocation for satellite-terrestrial integrated networks with non-orthogonal multiple access[J]. IEEE Journal of Selected Topics in Signal Processing, 2019, 13(3): 657–670. doi: 10.1109/JSTSP.2019.2899731.
    [30] YAN Xiaojuan, XIAO Hailin, AN Kang, et al. Ergodic capacity of NOMA-based uplink satellite networks with randomly deployed users[J]. IEEE Systems Journal, 2020, 14(3): 3343–3350. doi: 10.1109/JSYST.2019.2934358.
    [31] GUO Kefeng, AN Kang, ZHOU Feng, et al. On the secrecy performance of NOMA-based integrated satellite multiple-terrestrial relay networks with hardware impairments[J]. IEEE Transactions on Vehicular Technology, 2021, 70(4): 3661–3676. doi: 10.1109/TVT.2021.3068062.
    [32] LIU Rui, GUO Kefeng, AN Kang, et al. NOMA-based integrated satellite-terrestrial relay networks under spectrum sharing environment[J]. IEEE Wireless Communications Letters, 2021, 10(6): 1266–1270. doi: 10.1109/LWC.2021.3063759.
    [33] LIU Rui, GUO Kefeng, AN Kang, et al. NOMA-based overlay cognitive integrated satellite-terrestrial relay networks with secondary network selection[J]. IEEE Transactions on Vehicular Technology, 2022, 71(2): 2187–2192. doi: 10.1109/TVT.2021.3122029.
    [34] MIRIDAKIS N I, VERGADOS D D, and MICHALAS A. Dual-hop communication over a satellite relay and Shadowed Rician channels[J]. IEEE Transactions on Vehicular Technology, 2015, 64(9): 4031–4040. doi: 10.1109/TVT.2014.2361832.
    [35] The mathematical functions site[EB/OL]. http://functions.wolfram.com, 2023.
    [36] JEFFREY A and ZWILLINGER D. Table of Integrals, Series, and Products[M]. 7th ed. Amsterdam: Elsevier, 2007: 340.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  228
  • HTML全文浏览量:  101
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-03
  • 修回日期:  2023-07-03
  • 网络出版日期:  2023-07-14
  • 刊出日期:  2024-06-30

目录

    /

    返回文章
    返回