高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于混沌理论与DNA动态编码的卫星图像加密算法

肖嵩 陈哲 杨亚涛 马英杰 杨腾

肖嵩, 陈哲, 杨亚涛, 马英杰, 杨腾. 基于混沌理论与DNA动态编码的卫星图像加密算法[J]. 电子与信息学报, 2024, 46(3): 1128-1137. doi: 10.11999/JEIT230203
引用本文: 肖嵩, 陈哲, 杨亚涛, 马英杰, 杨腾. 基于混沌理论与DNA动态编码的卫星图像加密算法[J]. 电子与信息学报, 2024, 46(3): 1128-1137. doi: 10.11999/JEIT230203
XIAO Song, CHEN Zhe, YANG Yatao, MA Yingjie, YANG Teng. Satellite Image Encryption Algorithm Based on Chaos Theory and DNA Dynamic Coding[J]. Journal of Electronics & Information Technology, 2024, 46(3): 1128-1137. doi: 10.11999/JEIT230203
Citation: XIAO Song, CHEN Zhe, YANG Yatao, MA Yingjie, YANG Teng. Satellite Image Encryption Algorithm Based on Chaos Theory and DNA Dynamic Coding[J]. Journal of Electronics & Information Technology, 2024, 46(3): 1128-1137. doi: 10.11999/JEIT230203

基于混沌理论与DNA动态编码的卫星图像加密算法

doi: 10.11999/JEIT230203
基金项目: 国家自然科学基金(62101414, 62201423),北京市自然科学基金(4232034),中国博士后科学基金(2021M702546, 2021M702548),中国博士后科学基金(2022T150508),西安市科协青年人才基金(095920221320),广东省基础与应用基础研究基金(2020A1515110856)
详细信息
    作者简介:

    肖嵩:女,教授,研究方向为多媒体网络通信、人工智能安全

    陈哲:男,硕士生,研究方向为遥感信息安全

    杨亚涛:男,教授,研究方向为信息安全、密码系统与应用、密码协议和算法设计

    马英杰:女,副教授,研究方向为混沌保密通信

    杨腾:男,博士生,研究方向为遥感图像处理

    通讯作者:

    肖嵩 xiaosong@mail.xidian.edu.cn

  • 中图分类号: TN918.4; TP751.1

Satellite Image Encryption Algorithm Based on Chaos Theory and DNA Dynamic Coding

Funds: The National Natural Science Foundation of China(62101414, 62201423), Beijing Municipal Natural Science Foundation (4232034), The China Postdoctoral Science Foundation (2021M702546, 2021M702548), The China Postdoctoral Science Special Foundation (2022T150508), The Young Talent Fund of Xi'an Association for Science and Technology (095920221320), The Guangdong Basic and Applied Basic Research Foundation (2020A1515110856)
  • 摘要: 针对卫星图像在传输、存储过程中涉及的信息安全问题,该文提出一种新型的基于混沌理论与DNA动态编码的卫星图像加密算法。首先,提出一种改进型无限折叠混沌映射,拓宽了原有无限折叠混沌映射的混沌区间。之后,结合改进型Chebyshev混沌映射与SHA-256哈希算法,生成加密算法的密钥流,提升算法的明文敏感性。然后,利用混沌系统的状态值对Hilbert局部置乱后的像素进行DNA编码,实现DNA动态编码,解决了DNA编码规则较少所带来的容易受到暴力攻击的弱点。最后,使用混沌序列完成进一步混沌加密,从而彻底混淆原始像素信息,增加加密算法的随机性与复杂性,得到密文图像。实验结果表明,该算法具有较好的加密效果和应对各种攻击的能力。
  • 图  1  分岔图与功率谱

    图  2  李雅普诺夫指数比较与谱熵复杂度比较

    图  3  加密算法过程图

    图  4  部分卫星图像加密结果与直方图信息

    图  5  明文图像与密文图像在水平、垂直、对角线方向上的相邻像素分布

    图  6  受到不同程度裁剪攻击的密文图像的解密效果

    图  7  密钥敏感性分析

    表  1  本文算法与部分数字图像加密算法分析对比

    算法NPCR(%)UACI(%)信息熵密钥空间水平方向垂直方向对角线方向
    本文算法99.610 933.468 17.997 62562–0.016 80.008 10.000 2
    文献[27]99.611 933.487 47.997 922560.007 40.006 70.001 2
    文献[28]99.582 733.479 17.996 722560.004 90.003 70.008 9
    文献[29]99.609 633.457 47.997 322220.001 90.001 20.000 9
    下载: 导出CSV

    表  2  本文算法与部分卫星图像加密算法分析对比

    算法NPCR(%)UACI(%)信息熵密钥空间水平方向垂直方向对角线方向
    本文算法99.608 733.462 37.997 725620.002 7–0.001 6–0.004 0
    文献[2]99.608 433.457 37.997 523580.005 20.006 50.004 6
    文献[3]99.620 133.486 37.997 122840.006 1–0.007 10.001 4
    下载: 导出CSV

    表  3  相关系数分析

    卫星图像明文图像密文图像
    水平方向垂直方向对角线方向水平方向垂直方向对角线方向
    Shidao0.990 20.987 60.977 10.019 7–0.004 8–0.003 5
    Qingdao0.986 10.989 90.974 10.010 4–0.010 8–0.016 5
    下载: 导出CSV

    表  4  信息熵分析

    卫星图像明文图像信息熵密文图像信息熵
    Qingdao7.106 47.999 3
    Xi'an近红外波段6.447 77.996 9
    下载: 导出CSV

    表  5  视觉与无损分析

    测试图像PSNRSSIMPSNRSSIM
    Lena8.561 10.008 91
    Shidao7.471 40.007 41
    Qingdao8.517 90.009 41
    下载: 导出CSV
  • [1] LIU Zhanqiang, WANG Licheng, WANG Xianmin, et al. Secure remote sensing image registration based on compressed sensing in cloud setting[J]. IEEE Access, 2019, 7: 36516–36526. doi: 10.1109/ACCESS.2019.2903826.
    [2] NAIM M, ALI PACHA A, and SERIEF C. A novel satellite image encryption algorithm based on hyperchaotic systems and Josephus problem[J]. Advances in Space Research, 2021, 67(7): 2077–2103. doi: 10.1016/j.asr.2021.01.018.
    [3] BENTOUTOU Y, BENSIKADDOUR E H, TALEB N, et al. An improved image encryption algorithm for satellite applications[J]. Advances in Space Research, 2020, 66(1): 176–192. doi: 10.1016/j.asr.2019.09.027.
    [4] CHEN Junxin, ZHU Zhiliang, FU Chong, et al. An efficient image encryption scheme using lookup table-based confusion and diffusion[J]. Nonlinear Dynamics, 2015, 81(3): 1151–1166. doi: 10.1007/s11071-015-2057-6.
    [5] HU Guiqiang, XIAO Di, WANG Yong, et al. Cryptanalysis of a chaotic image cipher using Latin square-based confusion and diffusion[J]. Nonlinear Dynamics, 2017, 88(2): 1305–1316. doi: 10.1007/s11071-016-3311-2.
    [6] MONDAL B, KUMAR P, and SINGH S. A chaotic permutation and diffusion based image encryption algorithm for secure communications[J]. Multimedia Tools and Applications, 2018, 77(23): 31177–31198. doi: 10.1007/s11042-018-6214-z.
    [7] LI Ming, ZHOU Kanglei, REN Hua, et al. Cryptanalysis of permutation–diffusion-based lightweight chaotic image encryption scheme using CPA[J]. Applied Sciences, 2019, 9(3): 494. doi: 10.3390/app9030494.
    [8] DAWAHDEH Z E, YAAKOB S N, and AZIF BIN OTHMAN R. A new image encryption technique combining elliptic curve cryptosystem with hill cipher[J]. Journal of King Saud University - Computer and Information Sciences, 2018, 30(3): 349–355. doi: 10.1016/j.jksuci.2017.06.004.
    [9] LONE P N, SINGH D, STOFFOVÁ V, et al. Cryptanalysis and improved image encryption scheme using elliptic curve and affine hill cipher[J]. Mathematics, 2022, 10(20): 3878. doi: 10.3390/math10203878.
    [10] ANDONO P N and SETIADI D R I M. Improved pixel and bit confusion-diffusion based on mixed chaos and hash operation for image encryption[J]. IEEE Access, 2022, 10: 115143–115156. doi: 10.1109/ACCESS.2022.3218886.
    [11] KHAIRULLAH M K, ALKAHTANI A A, BAHARUDDIN M Z B, et al. Designing 1D chaotic maps for fast chaotic image encryption[J]. Electronics, 2021, 10(17): 2116. doi: 10.3390/electronics10172116.
    [12] JIANG Donghua, LIU Lidong, ZHU Liya, et al. Adaptive embedding: A novel meaningful image encryption scheme based on parallel compressive sensing and slant transform[J]. Signal Processing, 2021, 188: 108220. doi: 10.1016/j.sigpro.2021.108220.
    [13] ZHANG Xuncai, WANG Lingfei, ZHOU Zheng, et al. A chaos-based image encryption technique utilizing Hilbert curves and H-fractals[J]. IEEE Access, 2019, 7: 74734–74746. doi: 10.1109/ACCESS.2019.2921309.
    [14] SUN Junwei, MA Yongxing, WANG Zicheng, et al. Dynamic analysis and cryptographic application of a 5D hyperbolic memristor-coupled neuron[J]. Nonlinear Dynamics, 2023, 111(9): 8751–8769. doi: 10.1007/s11071-023-08237-9.
    [15] 徐锡统, 陈圣波, 于岩. 结合小波包变换与混沌神经元的遥感图像加密[J]. 遥感信息, 2021, 36(4): 76–83. doi: 10.3969/j.issn.1000-3177.2021.04.011.

    XU Xitong, CHEN Shengbo, and YU Yan. Remote sensing image encryption combining wavelet packet transform and chaotic neuron[J]. Remote Sensing Information, 2021, 36(4): 76–83. doi: 10.3969/j.issn.1000-3177.2021.04.011.
    [16] WANG Xingyuan, WANG Yu, ZHU Xiaoqiang, et al. Image encryption scheme based on chaos and DNA plane operations[J]. Multimedia Tools and Applications, 2019, 78(18): 26111–26128. doi: 10.1007/s11042-019-07794-9.
    [17] YILDIRIM M. DNA encoding for RGB image encryption with memristor based neuron model and chaos phenomenon[J]. Microelectronics Journal, 2020, 104: 104878. doi: 10.1016/j.mejo.2020.104878.
    [18] LI Xiang, WANG Leyuan, YAN Yinfa, et al. An improvement color image encryption algorithm based on DNA operations and real and complex chaotic systems[J]. Optik, 2016, 127(5): 2558–2565. doi: 10.1016/j.ijleo.2015.11.221.
    [19] CHAI Xiuli, CHEN Yiran, and BROYDE L. A novel chaos-based image encryption algorithm using DNA sequence operations[J]. Optics and Lasers in Engineering, 2017, 88: 197–213. doi: 10.1016/j.optlaseng.2016.08.009.
    [20] WANG Leimin, JIANG Shan, GE Mingfeng, et al. Finite-/fixed-time synchronization of memristor chaotic systems and image encryption application[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2021, 68(12): 4957–4969. doi: 10.1109/TCSI.2021.3121555.
    [21] WU Jiahui, LIAO Xiaofeng, and YANG Bo. Image encryption using 2D Hénon-Sine map and DNA approach[J]. Signal Processing, 2018, 153: 11–23. doi: 10.1016/j.sigpro.2018.06.008.
    [22] WU Chenyang, SUN Kehui, and XIAO Yan. A hyperchaotic map with multi-elliptic cavities based on modulation and coupling[J]. The European Physical Journal Special Topics, 2021, 230(7): 2011–2020. doi: 10.1140/epjs/s11734-021-00126-9.
    [23] 杨宣兵. 几类混沌系统特性分析、控制与图像加密应用研究[D]. [博士论文], 合肥工业大学, 2020.

    YANG Xuanbing. Characteristics analysis and control of several chaotic systems and their application in image encryption[D]. [Ph. D. dissertation], Hefei University of Technology, 2020.
    [24] FAN Shengwen, LI Kai, ZHANG Ying, et al. A hybrid chaotic encryption scheme for wireless body area networks[J]. IEEE Access, 2020, 8: 183411–183429. doi: 10.1109/ACCESS.2020.3029263.
    [25] 蒋东华, 朱礼亚, 沈子懿, 等. 结合二维压缩感知和混沌映射的双图像视觉安全加密算法[J]. 西安交通大学学报, 2022, 56(2): 139–148. doi: 10.7652/xjtuxb202202015.

    JIANG Donghua, ZHU Liya, SHEN Ziyi, et al. A double image visual security encryption algorithm combining 2D compressive sensing and chaotic mapping[J]. Journal of Xi'an Jiaotong University, 2022, 56(2): 139–148. doi: 10.7652/xjtuxb202202015.
    [26] 孙克辉, 贺少波, 何毅, 等. 混沌伪随机序列的谱熵复杂性分析[J]. 物理学报, 2013, 62(1): 010501. doi: 10.7498/aps.62.010501.

    SUN Kehui, HE Shaobo, HE Yi, et al. Complexity analysis of chaotic pseudo-random sequences based on spectral entropy algorithm[J]. Acta Physica Sinica, 2013, 62(1): 010501. doi: 10.7498/aps.62.010501.
    [27] ABBASI A A, MAZINANI M, and HOSSEINI R. Chaotic evolutionary-based image encryption using RNA codons and amino acid truth table[J]. Optics & Laser Technology, 2020, 132: 106465. doi: 10.1016/j.optlastec.2020.106465.
    [28] MAHMUD M, ATTA-UR-RAHMAN, LEE M, et al. Evolutionary-based image encryption using RNA codons truth table[J]. Optics & Laser Technology, 2020, 121: 105818. doi: 10.1016/j.optlastec.2019.105818.
    [29] CAO Chun, SUN Kehui, and LIU Wenhao. A novel bit-level image encryption algorithm based on 2D-LICM hyperchaotic map[J]. Signal Processing, 2018, 143: 122–133. doi: 10.1016/j.sigpro.2017.08.020.
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  226
  • HTML全文浏览量:  103
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-29
  • 修回日期:  2023-09-12
  • 网络出版日期:  2023-09-18
  • 刊出日期:  2024-03-27

目录

    /

    返回文章
    返回