高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多尺度分区有向时空图的步态情绪识别

张家波 高洁 黄钟玉 徐光辉

张家波, 高洁, 黄钟玉, 徐光辉. 基于多尺度分区有向时空图的步态情绪识别[J]. 电子与信息学报, 2024, 46(3): 1069-1078. doi: 10.11999/JEIT230175
引用本文: 张家波, 高洁, 黄钟玉, 徐光辉. 基于多尺度分区有向时空图的步态情绪识别[J]. 电子与信息学报, 2024, 46(3): 1069-1078. doi: 10.11999/JEIT230175
ZHANG Jiabo, GAO Jie, HUANG Zhongyu, XU Guanghui. Gait Emotion Recognition Based on a Multi-scale Partitioning Directed Spatio-temporal Graph[J]. Journal of Electronics & Information Technology, 2024, 46(3): 1069-1078. doi: 10.11999/JEIT230175
Citation: ZHANG Jiabo, GAO Jie, HUANG Zhongyu, XU Guanghui. Gait Emotion Recognition Based on a Multi-scale Partitioning Directed Spatio-temporal Graph[J]. Journal of Electronics & Information Technology, 2024, 46(3): 1069-1078. doi: 10.11999/JEIT230175

基于多尺度分区有向时空图的步态情绪识别

doi: 10.11999/JEIT230175
基金项目: 国家自然科学基金(61702066),重庆市自然科学基金(cstc2019jcyj-msxmX0681)
详细信息
    作者简介:

    张家波:男,副教授,硕士生导师,研究方向为步态识别、微表情情绪识别等

    高洁:男,硕士生,研究方向为步态情绪识别等

    黄钟玉:女,硕士生,研究方向为步态识别等

    徐光辉:女,硕士生,研究方向为微表情情绪识别等

    通讯作者:

    张家波 zhangjb@cqupt.edu.cn

  • 中图分类号: TN957.52; TP391.4

Gait Emotion Recognition Based on a Multi-scale Partitioning Directed Spatio-temporal Graph

Funds: The National Natural Science Foundation of China (61702066), The Natural Science Foundation of Chongqing (cstc2019jcyj-msxmX0681)
  • 摘要: 为了有效获取节点之间在多尺度、远距离以及在时间和空间位置上的依赖关系,以提高对步态情绪识别精度,本文首先提出一种构建分区有向时空图的方法:使用所有帧节点进行构图,然后按区域有向连接。其次,提出一种多尺度分区聚合与分区融合的方法。通过图深度学习对图节点进行更新。并对相似节点特征进行融合。最后,提出一个多尺度分区有向自适应时空图卷积神经网络(MPDAST-GCN)方法。网络通过在时间维度上构建图,获取远距离帧节点特征,并自适应地学习每帧上的特征数据。MPDAST-GCN将输入数据分类成高兴、伤心、愤怒和平常4种情绪类型。并在发布的Emotion-Gait数据集上,相比于目前最先进的方法实现6%的精度提升。
  • 图  1  多尺度分区有向聚合自适应图卷积网络

    图  2  两次节点分区方式和融合方式

    图  3  多帧节点之间的连接关系

    图  4  多尺度分区策略

    图  5  网络的精度损失值变化

    图  6  网络对4种识别精度变化

    表  1  与其他算法对比(%)

    方法HappySadAngryNormalMAP
    ST-GCN[11]9883421861
    DGNN[25]9888733774
    MS-G3D[17]9888754476
    LSTM[24]9684625173
    STEP[7]9788725277
    MST-GCN[12]9687706178
    HAP[6]9889807184
    本文9992907890
    下载: 导出CSV

    表  2  是否使用分区聚合算法以及不同聚合尺度$k$对网络性能影响

    ParameterAccuracy(%)
    kmHappySadAngryNormalMAP
    不使用1196.886.087.070.885.1
    1198.989.486.470.086.2
    使用2198.690.387.568.986.3
    3198.985.090.872.686.8
    下载: 导出CSV

    表  3  是否使用分区融合方法对网络性能影响

    ParameterAccuracy(%)
    kmHappySadAngryNormalMAP
    不使用1198.989.486.470.086.2
    使用1197.892.288.874.388.3
    下载: 导出CSV

    表  4  不同尺度下的图卷积块对网络性能影响

    ParameterAccuracy(%)
    kmHappySadAngryNormalMAP
    MPDAST-GCN1197.892.288.874.388.3
    1296.892.691.076.089.1
    1397.490.091.879.089.6
    下载: 导出CSV
  • [1] 王汝言, 陶中原, 赵容剑, 等. 多交互图卷积网络用于方面情感分析[J]. 电子与信息学报, 2022, 44(3): 1111–1118. doi: 10.11999/JEIT210459.

    WANG Ruyan, TAO Zhongyuan, ZHAO Rongjian, et al. Multi-interaction graph convolutional networks for aspect-level sentiment analysis[J]. Journal of Electronics &Information Technology, 2022, 44(3): 1111–1118. doi: 10.11999/JEIT210459.
    [2] 韩虎, 吴渊航, 秦晓雅. 面向方面级情感分析的交互图注意力网络模型[J]. 电子与信息学报, 2021, 43(11): 3282–3290. doi: 10.11999/JEIT210036.

    HAN Hu, WU Yuanhang, and QIN Xiaoya. An interactive graph attention networks model for aspect-level sentiment analysis[J]. Journal of Electronics &Information Technology, 2021, 43(11): 3282–3290. doi: 10.11999/JEIT210036.
    [3] 陈晓禾, 曹旭刚, 陈健生, 等. 基于三维卷积的帕金森患者拖步识别[J]. 电子与信息学报, 2021, 43(12): 3467–3475. doi: 10.11999/JEIT200543.doi:10.11999/JEIT200543.

    CHEN Xiaohe, CAO Xugang, CHEN Jiansheng, et al. Shuffling step recognition using 3D convolution for parkinsonian patients[J]. Journal of Electronics &Information Technology, 2021, 43(12): 3467–3475. doi: 10.11999/JEIT200543.doi:10.11999/JEIT200543.
    [4] 许文正, 黄天欢, 贲晛烨, 等. 跨视角步态识别综述[J]. 中国图象图形学报, 2023, 28(5): 1265–1286. doi: 10.11834/jig.220458.

    XU Wenzheng, HUANG Tianhuan, BEN Xianye, et al. Cross-view gait recognition: A review[J]. Journal of Image and Graphics, 2023, 28(5): 1265–1286. doi: 10.11834/jig.220458.
    [5] SEPAS-MOGHADDAM A and ETEMAD A. Deep gait recognition: A survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(1): 264–284. doi: 10.1109/TPAMI.2022.3151865.
    [6] BHATTACHARYA U, RONCAL C, MITTAL T, et al. Take an emotion walk: Perceiving emotions from gaits using hierarchical attention pooling and affective mapping[C]. The 16th European Conference on Computer Vision, Glasgow, UK, 2020: 145–163.
    [7] BHATTACHARYA U, MITTAL T, CHANDRA R, et al. STEP: Spatial temporal graph convolutional networks for emotion perception from gaits[C]. The 34th AAAI Conference on Artificial Intelligence, New York, USA, 2020: 1342–1350.
    [8] SUN Xiao, SU Kai, and FAN Chunxiao. VFL—A deep learning-based framework for classifying walking gaits into emotions[J]. Neurocomputing, 2022, 473: 1–13. doi: 10.1016/j.neucom.2021.12.007.
    [9] SHENG Weijie and LI Xinde. Multi-task learning for gait-based identity recognition and emotion recognition using attention enhanced temporal graph convolutional network[J]. Pattern Recognition, 2021, 114: 107868. doi: 10.1016/j.patcog.2021.107868.
    [10] HOANG T and CHOI D. Secure and privacy enhanced gait authentication on smart phone[J]. The Scientific World Journal, 2014, 2014: 438254. doi: 10.1155/2014/438254.
    [11] YAN Sijie, XIONG Yuanjun, and LIN Dahua. Spatial temporal graph convolutional networks for skeleton-based action recognition[C]. Proceedings of the 32nd AAAI Conference on Artificial Intelligence, New Orleans, USA, 2018.
    [12] CHEN Zhan, LI Sicheng, YANG Bing, et al. Multi-scale spatial temporal graph convolutional network for skeleton-based action recognition[C]. The 35th AAAI Conference on Artificial Intelligence, 2021: 1113–1122.
    [13] FENG Dong, WU Zhongcheng, ZHANG Jun, et al. Multi-scale spatial temporal graph neural network for skeleton-based action recognition[J]. IEEE Access, 2021, 9: 58256–58265. doi: 10.1109/ACCESS.2021.3073107.
    [14] RAHEVAR M, GANATRA A, SABA T, et al. Spatial-temporal dynamic graph attention network for skeleton-based action recognition[J]. IEEE Access, 2023, 11: 21546–21553. doi: 10.1109/ACCESS.2023.3247820.
    [15] SHI Lei, ZHANG Yifan, CHENG Jian, et al. Two-stream adaptive graph convolutional networks for skeleton-based action recognition[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 12018–12027. DOI: 10.1109/CVPR.2019.01230.
    [16] SI Chenyang, CHEN Wentao, WANG Wei, et al. An attention enhanced graph convolutional LSTM network for skeleton-based action recognition[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 1227–1236.
    [17] LIU Ziyu, ZHANG Hongwen, CHEN Zhenghao, et al. Disentangling and unifying graph convolutions for skeleton-based action recognition[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 140–149.
    [18] GEDAMU K, JI Yanli, GAO Lingling, et al. Relation-mining self-attention network for skeleton-based human action recognition[J]. Pattern Recognition, 2023, 139: 109455. doi: 10.1016/j.patcog.2023.109455.
    [19] ZHOU Yujie, DUAN Haodong, RAO Anyi, et al. Self-supervised action representation learning from partial spatio-temporal skeleton sequences[C]. The 37th AAAI Conference on Artificial Intelligence, Washington, USA, 2023: 3825–3833.
    [20] IONESCU C, PAPAVA D, OLARU V, et al. Human3.6m: Large scale datasets and predictive methods for 3D human sensing in natural environments[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(7): 1325–1339. doi: 10.1109/TPAMI.2013.248.
    [21] NARANG S, BEST A, FENG A, et al. Motion recognition of self and others on realistic 3D avatars[J]. Computer Animation and Virtual Worlds, 2017, 28(3/4): e1762. doi: 10.1002/cav.1762.
    [22] SHI Lei, ZHANG Yifan, CHENG Jian, et al. Skeleton-based action recognition with directed graph neural networks[C]. Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 7904–7913.
    [23] DABRAL R, MUNDHADA A, KUSUPATI U, et al. Learning 3D human pose from structure and motion[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 679–696.
    [24] HABIBIE I, HOLDEN D, SCHWARZ J, et al. A recurrent variational autoencoder for human motion synthesis[C]. In Proceedings of the 28th British Machine Vision Conference (BMVC), London, UK, 2017: 119.1–119.12.
    [25] RANDHAVANE T, BHATTACHARYA U, KAPSASKIS K, et al. Identifying emotions from walking using affective and deep features[J]. arXiv: 1906.11884, 2019.
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  497
  • HTML全文浏览量:  298
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-20
  • 修回日期:  2023-09-22
  • 网络出版日期:  2023-10-08
  • 刊出日期:  2024-03-27

目录

    /

    返回文章
    返回