[1] |
ISLAM K Y, AHMAD I, HABIBI D, et al. A survey on energy efficiency in underwater wireless communications[J]. Journal of Network and Computer Applications, 2022, 198: 103295. doi: 10.1016/j.jnca.2021.103295.
|
[2] |
CAMPAGNARO F, STEINMETZ F, and RENNER B C. Survey on low-cost underwater sensor networks: From niche applications to everyday use[J]. Journal of Marine Science and Engineering, 2023, 11(1): 125. doi: 10.3390/jmse 11010125.
|
[3] |
BELLO O and ZEADALLY S. Internet of underwater things communication: Architecture, technologies, research challenges and future opportunities[J]. Ad Hoc Networks, 2022, 135: 102933. doi: 10.1016/j.adhoc.2022.102933.
|
[4] |
PAL A, CAMPAGNARO F, ASHRAF K, et al. Communication for underwater sensor networks: A comprehensive summary[J]. ACM Transactions on Sensor Networks, 2023, 19(1): 22. doi: 10.1145/3546827.
|
[5] |
YANG Yang and YUM T S P. Delay distributions of slotted ALOHA and CSMA[J]. IEEE Transactions on Communications, 2003, 51(11): 1846–1857. doi: 10.1109/TCOMM.2003.819201.
|
[6] |
MA R T B, MISRA V, and RUBENSTEIN D. An analysis of generalized slotted-aloha protocols[J]. IEEE/ACM Transactions on Networking, 2009, 17(3): 936–949. doi: 10.1109/tnet.2008.925633.
|
[7] |
CHEN Weiqi, GUAN Quansheng, YU Hua, et al. Medium access control under space-time coupling in underwater acoustic networks[J]. IEEE Internet of Things Journal, 2021, 8(15): 12398–12409. doi: 10.1109/JIOT.2021.3063462.
|
[8] |
MOLINS M and STOJANOVIC M. Slotted FAMA: A MAC protocol for underwater acoustic networks[C]. OCEANS 2006-Asia Pacific, Singapore, 2006: 1–7. doi: 10.1109/OCEANSAP.2006.4393832.
|
[9] |
NG H H, SOH W S, and MOTANI M. MACA-U: A media access protocol for underwater acoustic networks[C]. IEEE GLOBECOM 2008–2008 IEEE Global Telecommunications Conference, New Orleans, USA, 2008: 1–5. doi: 10.1109/GLOCOM.2008.ECP.165.
|
[10] |
MUZZAMMIL M, AHMED N, QIAO Gang, et al. Fundamentals and advancements of magnetic-field communication for underwater wireless sensor networks[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(11): 7555–7570. doi: 10.1109/TAP.2020.3001451.
|
[11] |
EMOKPAE L E and YOUNIS M. Throughput analysis for shallow water communication utilizing directional antennas[J]. IEEE Journal on Selected Areas in Communications, 2012, 30(5): 1006–1018. doi: 10.1109/JSAC.2012.120615.
|
[12] |
杨健敏, 乔钢, 聂东虎, 等. 基于定向收发的水声通信网络邻节点发现机制[J]. 电子与信息学报, 2018, 40(11): 2765–2771. doi: 10.11999/JEIT180108.YANG Jianmin, QIAO Gang, NIE Donghu, et al. Neighbor discovery mechanism for underwater acoustic communication networks based on directional transmission and reception[J]. Journal of Electronics & Information Technology, 2018, 40(11): 2765–2771. doi: 10.11999/JEIT180108.
|
[13] |
刘奇佩, 乔钢, MAZHAR S. 水声网络全双工定向碰撞避免媒体接入控制协议[J]. 电子与信息学报, 2023, 45(2): 524–533. doi: 10.11999/JEIT211426.LIU Qipei, QIAO Gang, and MAZHAR S. Full-duplex directional collision avoidance MAC protocol for underwater acoustic networks[J]. Journal of Electronics & Information Technology, 2023, 45(2): 524–533. doi: 10.11999/JEIT211426.
|
[14] |
姚直象, 惠俊英, 殷敬伟, 等. 基于单矢量水听器四种方位估计方法[J]. 海洋工程, 2006, 24(1): 122–127,131. doi: 10.16483/j.issn.1005-9865.2006.01.019.YAO Zhixiang, HUI Junying, YIN Jingwei, et al. Four approaches to DOA estimation based on a single vector hydrophone[J]. The Ocean Engineering, 2006, 24(1): 122–127,131. doi: 10.16483/j.issn.1005-9865.2006.01.019.
|
[15] |
桑恩方, 乔钢. 基于声矢量传感器的水声通信技术研究[J]. 声学学报, 2006, 31(1): 61–67. doi: 10.15949/j.cnki.0371-0025.2006.01.010.SANG Enfang and QIAO Gang. The study of underwater acoustic communication technology based-on the acoustic vector sensor[J]. Acta Acustica, 2006, 31(1): 61–67. doi: 10.15949/j.cnki.0371-0025.2006.01.010.
|
[16] |
殷敬伟, 杨森, 杜鹏宇, 等. 基于单矢量有源平均声强器的码分多址水声通信[J]. 物理学报, 2012, 61(6): 064302. doi: 10.7498/aps.61.064302.YIN Jingwei, YANG Sen, DU Pengyu, et al. Code divided multiple access underwater acoustic communication based on active acoustic intensity average[J]. Acta Physica Sinica, 2012, 61(6): 064302. doi: 10.7498/aps.61.064302.
|
[17] |
惠俊英, 惠娟. 矢量声信号处理基础[M]. 北京: 国防工业出版社, 2009: 6–15.HUI Junying, HUI Juan. Vector signal processing fundamental theory[M]. Beijing: National Defense Industry Press, 2009: 6–15.
|
[18] |
黄熠, 刘书杰, 刘和兴, 等. 基于单矢量水听器的水声通信接收机的设计与实现[J]. 中国电子科学研究院学报, 2021, 16(7): 674–683,697. doi: 10.3969/j.issn.1673-5692.2021.07.007.HUANG Yi, LIU Shujie, LIU Hexing, et al. Design and implementation of underwater acoustic communication receiver machine based on single vector hydrophone[J]. Journal of China Academy of Electronics and Information Technology, 2021, 16(7): 674–683,697. doi: 10.3969/j.issn.1673-5692.2021.07.007.
|
[19] |
POLPRASERT C, RITCEY J A, and STOJANOVIC M. Capacity of OFDM systems over fading underwater acoustic channels[J]. IEEE Journal of Oceanic Engineering, 2011, 36(4): 514–524. doi: 10.1109/JOE.2011.2167071.
|
[20] |
LU Songtao, WANG Zhengdao, WANG Zhaohui, et al. Throughput of underwater wireless ad hoc networks with random access: A physical layer perspective[J]. IEEE Transactions on Wireless Communications, 2015, 14(11): 6257–6268. doi: 10.1109/TWC.2015.2451625.
|
[21] |
BREKHOVSKIKH L M and LYSANOV Y. Fundamentals of Ocean Acoustics[M]. Berlin: Springer, 1982: 8–11. doi: 10.1007/978-3-662-02342-6.
|