高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

定向接收低冲突率水声网络媒体接入控制协议

郑茂醇 韩笑 葛威 孙瑶 殷敬伟

郑茂醇, 韩笑, 葛威, 孙瑶, 殷敬伟. 定向接收低冲突率水声网络媒体接入控制协议[J]. 电子与信息学报, 2024, 46(3): 925-933. doi: 10.11999/JEIT230153
引用本文: 郑茂醇, 韩笑, 葛威, 孙瑶, 殷敬伟. 定向接收低冲突率水声网络媒体接入控制协议[J]. 电子与信息学报, 2024, 46(3): 925-933. doi: 10.11999/JEIT230153
ZHENG Maochun, HAN Xiao, GE Wei, SUN Yao, YIN Jingwei. Directional Reception Low Collision Probability MAC Protocol for Underwater Acoustic Networks[J]. Journal of Electronics & Information Technology, 2024, 46(3): 925-933. doi: 10.11999/JEIT230153
Citation: ZHENG Maochun, HAN Xiao, GE Wei, SUN Yao, YIN Jingwei. Directional Reception Low Collision Probability MAC Protocol for Underwater Acoustic Networks[J]. Journal of Electronics & Information Technology, 2024, 46(3): 925-933. doi: 10.11999/JEIT230153

定向接收低冲突率水声网络媒体接入控制协议

doi: 10.11999/JEIT230153
基金项目: 国家杰出青年科学基金(62125104)
详细信息
    作者简介:

    郑茂醇:男,博士,研究方向为水声网络及软件仿真

    韩笑:男,副教授,研究方向为水声通信及信号处理

    葛威:男,讲师,研究方向为水声通信及信号处理

    孙瑶:女,博士,研究方向为水声网络及软件仿真

    殷敬伟:男,教授,研究方向为水声通信与探测、信号处理及极地声学等

    通讯作者:

    韩笑 hanxiao1322@hrbeu.edu.cn

  • 中图分类号: TN929.3

Directional Reception Low Collision Probability MAC Protocol for Underwater Acoustic Networks

Funds: The National Science Foundation for Distinguished Young Scholars (62125104)
  • 摘要: 在全向水声通信网络场景中,较大的传播时延和较高的数据包碰撞率严重影响了网络性能。相比全向接收技术,声矢量传感器的声压和振速通过线性加权组合可以形成单边指向性,实现定向接收某个方向上的信号,进而提高网络的空间复用率。该文首先分析了声矢量传感器定向接收模式下的网络中断概率,验证定向接收技术网络应用的可行性。然后,提出了定向接收低冲突概率媒体接入控制协议(DRLCP-MAC)。该协议利用指向性接收波束握手机制建立稳定的数据传输链路,通过状态转移策略构建多对并行通信链路,缩小虚拟载波监听范围,提高网络的空间复用度。仿真结果表明,与水下冲突避免多址接入协议(MACA-U)和时隙地面多址接入协议(Slotted-FAMA)相比,DRLCP-MAC协议使信道接入成本降低了约50%和60%,网络吞吐量提升了约60%和400%,端到端时延降低了约50%和85%。
  • 图  1  基于单矢量水听器的定向接收技术

    图  2  网络中断概率

    图  3  RTS/CTS握手机制示意图

    图  4  不同发包率下的信道接入成本对比

    图  5  不同发包率下的吞吐量对比

    图  6  不同发包率下的端到端时延对比

  • [1] ISLAM K Y, AHMAD I, HABIBI D, et al. A survey on energy efficiency in underwater wireless communications[J]. Journal of Network and Computer Applications, 2022, 198: 103295. doi: 10.1016/j.jnca.2021.103295.
    [2] CAMPAGNARO F, STEINMETZ F, and RENNER B C. Survey on low-cost underwater sensor networks: From niche applications to everyday use[J]. Journal of Marine Science and Engineering, 2023, 11(1): 125. doi: 10.3390/jmse 11010125.
    [3] BELLO O and ZEADALLY S. Internet of underwater things communication: Architecture, technologies, research challenges and future opportunities[J]. Ad Hoc Networks, 2022, 135: 102933. doi: 10.1016/j.adhoc.2022.102933.
    [4] PAL A, CAMPAGNARO F, ASHRAF K, et al. Communication for underwater sensor networks: A comprehensive summary[J]. ACM Transactions on Sensor Networks, 2023, 19(1): 22. doi: 10.1145/3546827.
    [5] YANG Yang and YUM T S P. Delay distributions of slotted ALOHA and CSMA[J]. IEEE Transactions on Communications, 2003, 51(11): 1846–1857. doi: 10.1109/TCOMM.2003.819201.
    [6] MA R T B, MISRA V, and RUBENSTEIN D. An analysis of generalized slotted-aloha protocols[J]. IEEE/ACM Transactions on Networking, 2009, 17(3): 936–949. doi: 10.1109/tnet.2008.925633.
    [7] CHEN Weiqi, GUAN Quansheng, YU Hua, et al. Medium access control under space-time coupling in underwater acoustic networks[J]. IEEE Internet of Things Journal, 2021, 8(15): 12398–12409. doi: 10.1109/JIOT.2021.3063462.
    [8] MOLINS M and STOJANOVIC M. Slotted FAMA: A MAC protocol for underwater acoustic networks[C]. OCEANS 2006-Asia Pacific, Singapore, 2006: 1–7. doi: 10.1109/OCEANSAP.2006.4393832.
    [9] NG H H, SOH W S, and MOTANI M. MACA-U: A media access protocol for underwater acoustic networks[C]. IEEE GLOBECOM 2008–2008 IEEE Global Telecommunications Conference, New Orleans, USA, 2008: 1–5. doi: 10.1109/GLOCOM.2008.ECP.165.
    [10] MUZZAMMIL M, AHMED N, QIAO Gang, et al. Fundamentals and advancements of magnetic-field communication for underwater wireless sensor networks[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(11): 7555–7570. doi: 10.1109/TAP.2020.3001451.
    [11] EMOKPAE L E and YOUNIS M. Throughput analysis for shallow water communication utilizing directional antennas[J]. IEEE Journal on Selected Areas in Communications, 2012, 30(5): 1006–1018. doi: 10.1109/JSAC.2012.120615.
    [12] 杨健敏, 乔钢, 聂东虎, 等. 基于定向收发的水声通信网络邻节点发现机制[J]. 电子与信息学报, 2018, 40(11): 2765–2771. doi: 10.11999/JEIT180108.

    YANG Jianmin, QIAO Gang, NIE Donghu, et al. Neighbor discovery mechanism for underwater acoustic communication networks based on directional transmission and reception[J]. Journal of Electronics & Information Technology, 2018, 40(11): 2765–2771. doi: 10.11999/JEIT180108.
    [13] 刘奇佩, 乔钢, MAZHAR S. 水声网络全双工定向碰撞避免媒体接入控制协议[J]. 电子与信息学报, 2023, 45(2): 524–533. doi: 10.11999/JEIT211426.

    LIU Qipei, QIAO Gang, and MAZHAR S. Full-duplex directional collision avoidance MAC protocol for underwater acoustic networks[J]. Journal of Electronics & Information Technology, 2023, 45(2): 524–533. doi: 10.11999/JEIT211426.
    [14] 姚直象, 惠俊英, 殷敬伟, 等. 基于单矢量水听器四种方位估计方法[J]. 海洋工程, 2006, 24(1): 122–127,131. doi: 10.16483/j.issn.1005-9865.2006.01.019.

    YAO Zhixiang, HUI Junying, YIN Jingwei, et al. Four approaches to DOA estimation based on a single vector hydrophone[J]. The Ocean Engineering, 2006, 24(1): 122–127,131. doi: 10.16483/j.issn.1005-9865.2006.01.019.
    [15] 桑恩方, 乔钢. 基于声矢量传感器的水声通信技术研究[J]. 声学学报, 2006, 31(1): 61–67. doi: 10.15949/j.cnki.0371-0025.2006.01.010.

    SANG Enfang and QIAO Gang. The study of underwater acoustic communication technology based-on the acoustic vector sensor[J]. Acta Acustica, 2006, 31(1): 61–67. doi: 10.15949/j.cnki.0371-0025.2006.01.010.
    [16] 殷敬伟, 杨森, 杜鹏宇, 等. 基于单矢量有源平均声强器的码分多址水声通信[J]. 物理学报, 2012, 61(6): 064302. doi: 10.7498/aps.61.064302.

    YIN Jingwei, YANG Sen, DU Pengyu, et al. Code divided multiple access underwater acoustic communication based on active acoustic intensity average[J]. Acta Physica Sinica, 2012, 61(6): 064302. doi: 10.7498/aps.61.064302.
    [17] 惠俊英, 惠娟. 矢量声信号处理基础[M]. 北京: 国防工业出版社, 2009: 6–15.

    HUI Junying, HUI Juan. Vector signal processing fundamental theory[M]. Beijing: National Defense Industry Press, 2009: 6–15.
    [18] 黄熠, 刘书杰, 刘和兴, 等. 基于单矢量水听器的水声通信接收机的设计与实现[J]. 中国电子科学研究院学报, 2021, 16(7): 674–683,697. doi: 10.3969/j.issn.1673-5692.2021.07.007.

    HUANG Yi, LIU Shujie, LIU Hexing, et al. Design and implementation of underwater acoustic communication receiver machine based on single vector hydrophone[J]. Journal of China Academy of Electronics and Information Technology, 2021, 16(7): 674–683,697. doi: 10.3969/j.issn.1673-5692.2021.07.007.
    [19] POLPRASERT C, RITCEY J A, and STOJANOVIC M. Capacity of OFDM systems over fading underwater acoustic channels[J]. IEEE Journal of Oceanic Engineering, 2011, 36(4): 514–524. doi: 10.1109/JOE.2011.2167071.
    [20] LU Songtao, WANG Zhengdao, WANG Zhaohui, et al. Throughput of underwater wireless ad hoc networks with random access: A physical layer perspective[J]. IEEE Transactions on Wireless Communications, 2015, 14(11): 6257–6268. doi: 10.1109/TWC.2015.2451625.
    [21] BREKHOVSKIKH L M and LYSANOV Y. Fundamentals of Ocean Acoustics[M]. Berlin: Springer, 1982: 8–11. doi: 10.1007/978-3-662-02342-6.
  • 加载中
图(6)
计量
  • 文章访问数:  233
  • HTML全文浏览量:  92
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-13
  • 修回日期:  2024-01-17
  • 网络出版日期:  2024-01-29
  • 刊出日期:  2024-03-27

目录

    /

    返回文章
    返回