高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无人车集群协同围捕发展现状分析

徐友春 郭宏达 娄静涛 叶鹏 苏致远

徐友春, 郭宏达, 娄静涛, 叶鹏, 苏致远. 无人车集群协同围捕发展现状分析[J]. 电子与信息学报, 2024, 46(2): 456-471. doi: 10.11999/JEIT230122
引用本文: 徐友春, 郭宏达, 娄静涛, 叶鹏, 苏致远. 无人车集群协同围捕发展现状分析[J]. 电子与信息学报, 2024, 46(2): 456-471. doi: 10.11999/JEIT230122
XU Youchun, GUO Hongda, LOU Jingtao, YE Peng, SU Zhiyuan. Analysis on Current Development Situation of Unmanned Ground Vehicle Clusters Collaborative Pursuit[J]. Journal of Electronics & Information Technology, 2024, 46(2): 456-471. doi: 10.11999/JEIT230122
Citation: XU Youchun, GUO Hongda, LOU Jingtao, YE Peng, SU Zhiyuan. Analysis on Current Development Situation of Unmanned Ground Vehicle Clusters Collaborative Pursuit[J]. Journal of Electronics & Information Technology, 2024, 46(2): 456-471. doi: 10.11999/JEIT230122

无人车集群协同围捕发展现状分析

doi: 10.11999/JEIT230122
详细信息
    作者简介:

    徐友春:男,博士生导师,教授,研究方向为无人系统架构、机器学习等

    郭宏达:男,博士生,研究方向为多无人车路径规划、车间通信等

    娄静涛:男,博士,工程师,研究方向为机器视觉、智能无人系统等

    叶鹏:男,硕士,高级工程师,研究方向为智能无人系统等

    苏致远:男,博士,工程师,研究方向为车间通信、无人系统构架等

    通讯作者:

    叶鹏 jjxykjjl@163.com

  • 中图分类号: TN929.5; T249

Analysis on Current Development Situation of Unmanned Ground Vehicle Clusters Collaborative Pursuit

  • 摘要: 无人车集群具有成本低、安全性好、自主程度高等优点,已成为无人驾驶领域的研究热点。基于无人车集群,研究人员提出多种不同协同策略以完成各类任务,其中协同围捕作为重要的应用方向,无论是在军用还是民用领域都受到了广泛关注。针对此问题,该文首先基于无人车集群的相关应用和架构,对协同围捕的策略机理进行了系统分析,并将协同围捕策略划分为搜索、追踪和围堵3个子模式。然后,从博弈论、概率分析和机器学习等角度梳理了协同围捕的关键方法,并对这些算法的优缺点进行了比较。最后,对未来研究提出了意见建议,为进一步提高无人车集群协同围捕的效率和性能提供参考和思路。
  • 图  1  无人车集群集中式结构

    图  2  无人车集群分布式结构

    图  3  无人车集群分层式结构

    图  4  无人车集群表现形式

    图  5  无人车集群围捕示意图

    图  6  围捕成功示意图

    图  7  围捕模式切换

    图  8  围捕过程示意图

    图  9  虚拟结构法

    图  10  基于行为法

    图  11  基于博弈论围捕

    表  1  无人车集群围捕常规方法

    算法 文献 应用 集群规模 协同结构 优点 局限
    领航—跟随法 [56](2023年) 追踪 集中式 实现单目标及多目标的围捕 灵活性差
    虚拟结构法 [57](2019年) 追踪 集中式 计算简单高效,易于实现. 在理论上进行验证,未考虑实车情况
    基于行为法 [58](2020年) 围捕 小/大 分布式 解决目标比围捕者移动得快的情况 空间需提前限定
    快速搜索随机树 [59](2020年) 搜索追踪 集中式 兼容静态环境和动态环境 未考虑移动中任务分配
    蚁群算法 [60](2017年) 搜索围堵 分布式 区域覆盖性能好 不同场景下模型参数的自适应调节差
    链阵法 [61](2009年) 围捕 集中式 根据实际需求动态调整围捕者数 未考虑复杂障碍环境
    反步法 [62](2021年) 围堵 集中式 系统整体鲁棒性强 避碰效果有待提高
    Voronoi 图 [63](2022年) 搜索 小/大 集中式 降低整个区域不确定度 未考虑通信约束
    分布式控制 [64](2019年) 围堵 小/大 分布式 解决无人车退出/加入围堵过程的问题 未考虑无人车间碰撞
    下载: 导出CSV

    表  2  无人车集群围捕优化方法探微

    算法 文献 应用 目标数量 集群规模 协同结构 优点 局限
    博弈论 [77](2019年) 追踪 单/多 小/大 集中式 实现围捕者在线路径规划 只在理论上进行验证,未考虑实车情况
    概率分析 [78](2021年) 追踪 集中式 解决有限数量围捕者故障问题 鲁棒性不强
    机器
    学习
    强化
    学习
    [79](2019年) 追踪围堵 小/大 集中式 实现围捕算法的解耦 未考虑地形、障碍物对通信影响
    [80](2020年) 围堵 小/大 集中式 对相似的目标进行聚类,有效聚集和包围相互靠近的目标 目标过于独立时,算法有效性低
    深度
    强化
    学习
    [75](2022年) 追踪 集中式训练分布式执行 数据效率和概括能力提高 只适用于单目标
    [81](2021年) 追踪 小/大 分布式 适用于非完整性围捕者 需要为每一个目标训练一个网络
    [82](2023年) 追踪围堵 集中式训练分布式执行 提高了策略迭代效率及泛化能力 目标数量增多时对结果影响较大
    [66](2020年) 追踪 集中式训练分布式执行 复杂性大大降低 扩展能力有待加强
    [83](2020年) 追踪 集中式训练分布式执行 围捕者和目标同时被训练,更适合与具有一定智力水平的目标 方法只适用于离散空间,未扩展到连续动作空间
    [9](2020年) 围堵 分布式 在连续空间中协同完成目标围堵 收敛性有缺陷;只研究了2维有限连续空间
    深度
    Q 网络
    [84](2022年) 搜索 单/多 小/大 分布式 效果稳定,具有泛化能力 不能保证收敛,智能体间缺乏协同合作
    [85](2018年) 围堵 小/大 集中式 考虑目标从围捕者包围中逃脱 未考虑多个目标和围捕者环境
    深度
    确定性
    策略
    梯度
    [86](2021年) 围捕 集中式训练分布式执行 缩短训练总时间,提高了算法稳定性、鲁棒性 只在仿真环境中运行,未考虑实际情况
    [87](2019年) 追踪 集中式训练分布式执行 解决训练测试智能体数量不同的问题 -
    [88](2021年) 追踪 小/大 集中式训练分布式执行 降低模型与真实场景间误差 场景简单,围捕者、障碍物数量少
    [14](2021年) 编队 集中式训练分布式执行 有效完成不同队形之间转换 智能体规模较大时效果有待提高
    [89](2021年) 搜索追踪 小/大 集中式训练分布式执行 提出新型混合编队控制,以随机行为捕捉动态目标 未考虑到多动态目标以及比围捕运动更快的目标
    [90](2018年) 追踪围堵 集中式训练分布式执行 避障效果好 未包含机器人的顶层决策
    下载: 导出CSV
  • [1] ZHANG Tianhao, LI Yueheng, LI Shuai, et al. Decentralized circle formation control for fish-like robots in the real-world via reinforcement learning[C]. 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 2021: 8814–8820. doi: 10.1109/ICRA48506.2021.9562019.
    [2] CAO Ruyue, LI Shichao, JI Yuhan, et al. Task assignment of multiple agricultural machinery cooperation based on improved ant colony algorithm[J]. Computers and Electronics in Agriculture, 2021, 182: 105993. doi: 10.1016/j.compag.2021.105993.
    [3] HAMED O, HAMLICH M, and ENNAJI M. Hunting strategy for multi-robot based on wolf swarm algorithm and artificial potential field[J]. Indonesian Journal of Electrical Engineering and Computer Science, 2022, 25(1): 159–171. doi: 10.11591/ijeecs.v25.i1.pp159-171.
    [4] ZHANG Youmin and MEHRJERDI H. A survey on multiple unmanned vehicles formation control and coordination: Normal and fault situations[C]. 2013 International Conference on Unmanned Aircraft Systems (ICUAS), Atlanta, USA, 2013: 1087–1096. doi: 10.1109/ICUAS.2013.6564798.
    [5] 李冀, 周战洪, 贺红林, 等. 基于围猎改进哈里斯鹰优化的粒子滤波方法[J]. 电子与信息学报, 2023, 45(6): 2284–2292. doi: 10.11999/JEIT220532.

    LI Ji, ZHOU Zhanhong, HE Honglin, et al. A particle filter method based on harris hawks optimization improved by encircling strategy[J]. Journal of Electronics & Information Technology, 2023, 45(6): 2284–2292. doi: 10.11999/JEIT220532.
    [6] CHEN Zhongyu, NIU Ben, ZHANG Liang, et al. Command filtering-based adaptive neural network control for uncertain switched nonlinear systems using event-triggered communication[J]. International Journal of Robust and Nonlinear Control, 2022, 32(11): 6507–6522. doi: 10.1002/rnc.6154.
    [7] ZHENG Lulu, CHEN Jiarui, WANG Jianhao, et al. Episodic multi-agent reinforcement learning with curiosity-driven exploration[C]. 35th Conferenceon Neural Information Processing Systems, Sydney, Australi, 2021: 3757–3769. doi: 10.48550/arXiv.2111.11032.
    [8] ZHANG Liwei, LIN Zhibin, WANG Jie, et al. Rapidly-exploring random trees multi-robot map exploration under optimization framework[J]. Robotics and Autonomous Systems, 2020, 131: 103565. doi: 10.1016/j.robot.2020.103565.
    [9] MA Junchong, LU Huimin, XIAO Junhao, et al. Multi-robot target encirclement control with collision avoidance via deep reinforcement learning[J]. Journal of Intelligent & Robotic Systems, 2020, 99(2): 371–386. doi: 10.1007/s10846-019-01106-x.
    [10] ACEVEDO J J, ARRUE B C, MAZA I, et al. A decentralized algorithm for area surveillance missions using a team of aerial robots with different sensing capabilities[C]. 2014 IEEE International Conference on Robotics and Automation (ICRA), HongKong, China, 2014: 4735–4740. doi: 10.1109/ICRA.2014.6907552.
    [11] SUN Yinjiang, ZHANG Rui, LIANG Wenbao, et al. Multi-agent cooperative search based on reinforcement learning[C]. 2020 3rd International Conference on Unmanned Systems (ICUS), Harbin, China, 2020: 891–896. doi: 10.1109/ICUS50048.2020.9275003.
    [12] CAI Junqi, PENG Zhihong, DING Shuxin, et al. Problem-specific multi-objective invasive weed optimization algorithm for reconnaissance mission scheduling problem[J]. Computers & Industrial Engineering, 2021, 157: 107345. doi: 10.1016/j.cie.2021.107345.
    [13] BHARATHI V and SAKTHIVEL K. Unmanned mobile robot in unknown obstacle environments for multi switching control tracking using adaptive nonlinear sliding mode control method[J]. Journal of Intelligent & Fuzzy Systems, 2022, 43(3): 3513–3525. doi: 10.3233/jifs-213588.
    [14] MIYAZAKI K, MATSUNAGA N, and MURATA K. Formation path learning for cooperative transportation of multiple robots using MADDPG[C]. The 21st International Conference on Control, Automation and Systems (ICCAS), Jeju, Korea, 2021: 1619–1623.
    [15] REZAEI S and BEHNAMIAN J. Benders decomposition-based particle swarm optimization for competitive supply networks with a sustainable multi-agent platform and virtual alliances[J]. Applied Soft Computing, 2022, 114: 107985. doi: 10.1016/j.asoc.2021.107985.
    [16] BOLSHAKOV V, ALFIMTSEV A, SAKULIN S, et al. Deep reinforcement ant colony optimization for swarm learning[C]. Advances in Neural Computation, Machine Learning, and Cognitive Research V, Moscow, Russia, 2022: 9–15. doi: 10.1007/978-3-030-91581-0_2.
    [17] SARTORETTI G, KERR J, SHI Yunfei, et al. PRIMAL: Pathfinding via reinforcement and imitation multi-agent learning[J]. IEEE Robotics and Automation Letters, 2019, 4(3): 2378–2385. doi: 10.1109/LRA.2019.2903261.
    [18] LIU Fen, YUAN Shenghai, MENG Wei, et al. Multiple noncooperative targets encirclement by relative distance-based positioning and neural antisynchronization control[J]. IEEE Transactions on Industrial Electronics, 2024, 71(2): 1675–1685. doi: 10.1109/tie.2023.3257364.
    [19] AHN K and PARK J. LPMARL: Linear programming based implicit task assignment for hierarchical multi-agent reinforcement learning[C]. The Eleventh International Conference on Learning Representations (ICLR 2023), Kigali, Rwanda 2023: 1–14.
    [20] ZHAO Fuqing, WANG Zhenyu, WANG Ling, et al. A multi-agent reinforcement learning driven artificial bee colony algorithm with the central controller[J]. Expert Systems with Applications, 2023, 219: 119672. doi: 10.1016/j.eswa.2023.119672.
    [21] SAYED A S, AMMAR H H, and SHALABY R. Centralized multi-agent mobile robots SLAM and navigation for COVID-19 field hospitals[C]. 2020 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES), Giza, Egypt, 2020: 444–449. doi: 10.1109/NILES50944.2020.9257919.
    [22] KOUZEGHAR M, SONG Y, MEGHJANI M, et al. Multi-target pursuit by a decentralized heterogeneous UAV swarm using deep multi-agent reinforcement learning[C]. 2023 IEEE International Conference on Robotics and Automation (ICRA), London, UK, 2023: 3289–3295. doi: 10.1109/ICRA48891.2023.10160919.
    [23] 姜奇, 蔡明鑫, 程庆丰, 等. 面向分层无人机网络的去中心群组密钥管理方案[J]. 电子与信息学报, 2023, 45(5): 1669–1677. doi: 10.11999/JEIT220347.

    JIANG Qi, CAI Mingxin, CHENG Qingfeng, et al. Decentralized group key management scheme in hierarchical unmanned aerial vehicle network[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1669–1677. doi: 10.11999/ JEIT220347. doi: 10.11999/JEIT220347.
    [24] LIN Shiwei, LIU Ang, WANG Jianguo, et al. A review of path-planning approaches for multiple mobile robots[J]. Machines, 2022, 10(9): 773. doi: 10.3390/machines10090773.
    [25] KWA H L, KIT J L, and BOUFFANAIS R. Balancing collective exploration and exploitation in multi-agent and multi-robot systems: A review[J]. Frontiers in Robotics and AI, 2022, 8: 771520. doi: 10.3389/frobt.2021.771520.
    [26] LIU Qiang, HE Ming, XU Daqin, et al. A mechanism for recognizing and suppressing the emergent behavior of UAV swarm[J]. Mathematical Problems in Engineering, 2018, 2018: 6734923. doi: 10.1155/2018/6734923.
    [27] LIANG Dingkun, SUN Ning, WU Yiming, et al. Trajectory planning-based control of underactuated wheeled inverted pendulum robots[J]. Science China Information Sciences, 2019, 62(5): 50207. doi: 10.1007/s11432-018-9623-3.
    [28] LIU Yuanchang and BUCKNALL R. A survey of formation control and motion planning of multiple unmanned vehicles[J]. Robotica, 2018, 36(7): 1019–1047. doi: 10.1017/s0263574718000218.
    [29] ZHOU Panpan and CHEN B M. Distributed optimal solutions for multiagent pursuit-evasion games for capture and formation control[J]. IEEE Transactions on Industrial Electronics, 2023, 12(6): 1–10. doi: 10.1109/tie.2023.3283684.
    [30] MOORTHY S and JOO Y H. Distributed leader-following formation control for multiple nonholonomic mobile robots via bioinspired neurodynamic approach[J]. Neurocomputing, 2022, 492: 308–321. doi: 10.1016/j.neucom.2022.04.001.
    [31] 张泽锡, 钟文健, 林柏梁. 带时间窗的卡车编队路径优化[J]. 交通运输系统工程与信息, 2022, 22(5): 253–263. doi: 10.16097/j.cnki.1009-6744.2022.05.026.

    ZHANG Zexi, ZHONG Wenjian, and LIN Bailiang. Optimization of truck platooning routing with time windows[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(5): 253–263. doi: 10.16097/j.cnki.1009-6744.2022.05.026.
    [32] ZHANG Jingtao, XU Zhipeng, YU Fangchao, et al. A fully distributed multi-robot navigation method without pre-allocating target positions[J]. Autonomous Robots, 2021, 45(4): 473–492. doi: 10.1007/s10514-021-09981-w.
    [33] SARKAR R, BARMAN D, and CHOWDHURY N. Domain knowledge based genetic algorithms for mobile robot path planning having single and multiple targets[J]. Journal of King Saud University - Computer and Information Sciences, 2022, 34(7): 4269–4283. doi: 10.1016/j.jksuci.2020.10.010.
    [34] FARIDI A Q, SHARMA S, SHUKLA A, et al. Multi-robot multi-target dynamic path planning using artificial bee colony and evolutionary programming in unknown environment[J]. Intelligent Service Robotics, 2018, 11(2): 171–186. doi: 10.1007/s11370-017-0244-7.
    [35] 赵明明, 李彬, 王敏立. 不确定信息下基于拍卖算法的多无人机同时到达攻击多目标[J]. 电光与控制, 2015, 22(2): 89–93. doi: 10.3969/j.issn.1671-637X.2015.02.020.

    ZHAO Mingming, LI Bin, and WANG Minli. Auction algorithm based multi-UAV arriving simultaneously to attack multiple targets with uncertain information[J]. Electronics Optics & Control, 2015, 22(2): 89–93. doi: 10.3969/j.issn.1671-637X.2015.02.020.
    [36] BAREA A, URRUTXUA H, and CADARSO L. Large-scale object selection and trajectory planning for multi-target space debris removal missions[J]. Acta Astronautica, 2020, 170: 289–301. doi: 10.1016/j.actaastro.2020.01.032.
    [37] LIN Jie, MORSE A S, and ANDERSON B D O. The multi-agent rendezvous problem[C]. 42nd IEEE International Conference on Decision and Control (IEEE Cat. No. 03ch37475), Maui, USA, 2003: 1508–1513.
    [38] LI Yongqi, LI Shengquan, ZHANG Yumei, et al. Dynamic route planning for a USV-UAV multi-robot system in the rendezvous task with obstacles[J]. Journal of Intelligent & Robotic Systems, 2023, 107(4): 52. doi: 10.1007/s10846-023-01830-5.
    [39] SKEIK O, HU Junyan, ARVIN F, et al. Cooperative control of integrator negative imaginary systems with application to rendezvous multiple mobile robots[C]. 12th International Workshop on Robot Motion and Control (RoMoCo), Poznan, Poland, 2019: 15–20. doi: 10.1109/RoMoCo.2019.8787358.
    [40] SHAO Zhuang, YAN Fei, ZHOU Zhou, et al. Path planning for multi-UAV formation rendezvous based on distributed cooperative particle swarm optimization[J]. Applied Sciences, 2019, 9(13): 2621. doi: 10.3390/app9132621.
    [41] DONG Yi and HUANG Jie. A leader-following rendezvous problem of double integrator multi-agent systems[J]. Automatica, 2013, 49(5): 1386–1391. doi: 10.1016/j.automatica. 2013.02.024.
    [42] SZŐTS J and HARMATI I. Optimal strategies of a pursuit-evasion game with three pursuers and one superior evader[J]. Robotics and Autonomous Systems, 2023, 161: 104360. doi: 10.1016/j.robot.2022.104360.
    [43] ZHANG Leiming, PROROK A, and BHATTACHARYA S. Multi-agent pursuit-evasion under uncertainties with redundant robot assignments: Extended abstract[C]. 2019 International Symposium on Multi-Robot and Multi-Agent Systems (MRS), New Brunswick, USA, 2019: 92–94. doi: 10.1109/MRS.2019.8901055.
    [44] SUN Zhiyuan, SUN Hanbing, LI Ping, et al. Cooperative strategy for pursuit-evasion problem in the presence of static and dynamic obstacles[J]. Ocean Engineering, 2023, 279: 114476. doi: 10.1016/j.oceaneng.2023.114476.
    [45] ZHANG Tianle, LIU Zhen, PU Zhiqiang, et al. Multi-target encirclement with collision avoidance via deep reinforcement learning using relational graphs[C]. 2022 IEEE International Conference on Robotics and Automation (ICRA), Philadelphia, USA, 2022: 8794–8800. doi: 10.1109/ICRA46639.2022.9812151.
    [46] GAO Yan, BAI Chenggang, ZHANG Lei, et al. Multi-UAV cooperative target encirclement within an annular virtual tube[J]. Aerospace Science and Technology, 2022, 128: 107800. doi: 10.1016/j.ast.2022.107800.
    [47] 宁宇铭, 李团结, 姚聪, 等. 基于快速扩展随机树―贪婪边界搜索的多机器人协同空间探索方法[J]. 机器人, 2022, 44(6): 708–719. doi: 10.13973/j.cnki.robot.210318.

    NING Yuming, LI Tuanjie, YAO Cong, et al. Multi-robot cooperative space exploration method based on rapidly-exploring random trees and greedy frontier-based exploration[J]. Robot, 2022, 44(6): 708–719. doi: 10.13973/j.cnki.robot.210318.
    [48] PAEZ D, ROMERO J P, NORIEGA B, et al. Distributed particle swarm optimization for multi-robot system in search and rescue operations[J]. IFAC-PapersOnLine, 2021, 54(4): 1–6. doi: 10.1016/j.ifacol.2021.10.001.
    [49] YE Sean, NATARAJAN M, WU Zixuan, et al. Diffusion based multi-agent adversarial tracking[J]. arXiv: 2307.06244, 2023.
    [50] ZHOU Wenhong, LI Jie, LIU Zhihong, et al. Improving multi-target cooperative tracking guidance for UAV swarms using multi-agent reinforcement learning[J]. Chinese Journal of Aeronautics, 2022, 35(7): 100–112. doi: 10.1016/j.cja.2021.09.008.
    [51] SUN Qinpeng, WANG Zhonghua, LI Meng, et al. Path tracking control of wheeled mobile robot based on improved pure pursuit algorithm[C]. 2019 Chinese Automation Congress (CAC), Hangzhou, China, 2019: 4239–4244. doi: 10.1109/CAC48633.2019.8997258.
    [52] JIA Qingyong, XU Hongli, FENG Xisheng, et al. A novel cooperative pursuit strategy in multiple underwater robots[C]. OCEANS 2019-Marseille, Marseille, France, 2019: 1–8. doi: 10.1109/OCEANSE.2019.8867227.
    [53] MA Junchong, YAO Weijia, DAI Wei, et al. Cooperative encirclement control for a group of targets by decentralized robots with collision avoidance[C]. The 37th Chinese Control Conference (CCC), Wuhan, China, 2018: 6848–6853. doi: 10.23919/ChiCC.2018.8483768.
    [54] ZHANG Fei, SHAO Xingling, XIA Yi, et al. Elliptical encirclement control capable of reinforcing performances for UAVs around a dynamic target[J]. Defence Technology, 2023, 3(13): 1–16. doi: 10.1016/j.dt.2023.03.014.
    [55] YAMAGUCHI H. A cooperative hunting behavior by mobile-robot troops[J]. The International Journal of Robotics Research, 1999, 18(9): 931–940. doi: 10.1177/02783649922066664.
    [56] YANG Aiwu, LIANG Xiaolong, HOU Yueqi, et al. An autonomous cooperative interception method with angle constraints using a swarm of UAVs[J]. IEEE Transactions on Vehicular Technology, 2023, 25(6): 1–14. doi: 10.1109/tvt.2023.3298635.
    [57] JAIN P and PETERSON C K. Encirclement of moving targets using relative range and bearing measurements[C]. 2019 International Conference on Unmanned Aircraft Systems (ICUAS), Atlanta, USA, 2019: 43–50. doi: 10.1109/ICUAS.2019.8798252.
    [58] FANG Xu, WANG Chen, XIE Lihua, et al. Cooperative pursuit with multi-pursuer and one faster free-moving evader[J]. IEEE Transactions on Cybernetics, 2022, 52(3): 1405–1414. doi: 10.1109/TCYB.2019.2958548.
    [59] SHOME R, SOLOVEY K, DOBSON A, et al. dRRT*: Scalable and informed asymptotically-optimal multi-robot motion planning[J]. Autonomous Robots, 2020, 44(3/4): 443–467. doi: 10.1007/s10514-019-09832-9.
    [60] SONG Hui, JIA Minghan, LIAN Yihang, et al. UAV path planning based on improved ant colony algorithm[J]. Journal of Electronic Research and Application, 2017, 6(2): 10–25. doi: 10.1117/12.2678893.
    [61] DAHL T S, MATARIĆ M, and SUKHATME G S. Multi-robot task allocation through vacancy chain scheduling[J]. Robotics and Autonomous Systems, 2009, 57(6/7): 674–687. doi: 10.1016/j.robot.2008.12.001.
    [62] GONZÁLEZ-SIERRA J, FLORES-MONTES D, HERNANDEZ-MARTINEZ E G, et al. Robust circumnavigation of a heterogeneous multi-agent system[J]. Autonomous Robots, 2021, 45(2): 265–281. doi: 10.1007/s10514-020-09962-5.
    [63] HUANG Heyuan, KANG Yu, WANG Xiaolu, et al. Multi-robot collision avoidance based on buffered voronoi diagram[C]. 2022 International Conference on Machine Learning and Knowledge Engineering (MLKE), Guilin, China, 2022: 227–235. doi: 10.1109/mlke55170.2022.00051.
    [64] YAO Weijia, LU Huimin, ZENG Zhiwen, et al. Distributed static and dynamic circumnavigation control with arbitrary spacings for a heterogeneous multi-robot system[J]. Journal of Intelligent & Robotic Systems, 2019, 94(3/4): 883–905. doi: 10.1007/s10846-018-0906-5.
    [65] LIU Shuang and SUN Dong. Leader–follower-based dynamic trajectory planning for multirobot formation[J]. Robotica, 2013, 31(8): 1351–1359. doi: 10.1017/s0263574713000490.
    [66] WANG Yuanda, DONG Lu, and SUN Changyin. Cooperative control for multi-player pursuit-evasion games with reinforcement learning[J]. Neurocomputing, 2020, 412: 101–114. doi: 10.1016/j.neucom.2020.06.031.
    [67] ZHAO Zhenyi, HU Qiao, FENG Haobo, et al. A cooperative hunting method for multi-AUV swarm in underwater weak information environment with obstacles[J]. Journal of Marine Science and Engineering, 2022, 10(9): 1266. doi: 10.3390/jmse10091266.
    [68] MARINO A, PARKER L E, ANTONELLI G, et al. A decentralized architecture for multi-robot systems based on the null-space-behavioral control with application to multi-robot border patrolling[J]. Journal of Intelligent & Robotic Systems, 2013, 71(3): 423–444. doi: 10.1007/s10846-012-9783-5.
    [69] NI Jianjun, YANG Liu, WU Liuying, et al. An improved spinal neural system-based approach for heterogeneous AUVs cooperative hunting[J]. International Journal of Fuzzy Systems, 2018, 20(2): 672–686. doi: 10.1007/s40815-017-0395-x.
    [70] ZHENG Yanbin, FAN Wenxin, and HAN Mengyun. Research on multi-agent collaborative hunting algorithm based on game theory and Q-learning for a single escaper[J]. Journal of Intelligent & Fuzzy Systems, 2021, 40(1): 205–219. doi: 10.3233/JIFS-191222.
    [71] ZHONG Yun, YAO Peiyang, SUN Yu, et al. Method of multi-UAVs cooperative search for markov moving targets[C]. 2017 29th Chinese Control And Decision Conference (CCDC), Chongqing, China, 2017: 6783–6789. doi: 10.1109/CCDC.2017.7978400.
    [72] OLOFSSON J, HENDEBY G, LAUKNES T R, et al. Multi-agent informed path planning using the probability hypothesis density[J]. Autonomous Robots, 2020, 44(6): 913–925. doi: 10.1007/s10514-020-09904-1.
    [73] LEONARDOS S, OVERMAN W, PANAGEAS I, et al. Global convergence of multi-agent policy gradient in markov potential games[C]. The Tenth International Conference on Learning Representations, 2021. doi: 10.48550/arXiv.2106.01969.
    [74] ZHU Xudong, ZHANG Fan, and LI Hui. Swarm deep reinforcement learning for robotic manipulation[J]. Procedia Computer Science, 2022, 198: 472–479. doi: 10.1016/j.procs.2021.12.272.
    [75] ZHANG Zheng, WANG Xiaohan, ZHANG Qingrui, et al. Multi-robot cooperative pursuit via potential field-enhanced reinforcement learning[C]. 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, USA, 2022: 8808–8814. doi: 10.1109/ICRA46639.2022.9812083.
    [76] HU Jian, HU Siyue, and LIAO S W. Policy regularization via noisy advantage values for cooperative multi-agent actor-critic methods[J]. arXiv: 2106.14334, 2021.
    [77] 李瑞珍, 杨惠珍, 萧丛杉. 基于动态围捕点的多机器人协同策略[J]. 控制工程, 2019, 26(3): 510–514. doi: 10.14107/j.cnki.kzgc.161174.

    LI Ruizhen, YANG Huizhen, and XIAO Congshan. Cooperative hunting strategy for multi-mobile robot systems based on dynamic hunting points[J]. Control Engineering of China, 2019, 26(3): 510–514. doi: 10.14107/j.cnki.kzgc.161174.
    [78] OLSEN T, STIFFLER N M, and O’KANE J M. Rapid recovery from robot failures in multi-robot visibility-based pursuit-evasion[C]. 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 2021: 9734–9741. doi: 10.1109/IROS51168.2021.9636141.
    [79] ZHANG Wenyu, GAI Jingyao, ZHANG Zhigang, et al. Double-DQN based path smoothing and tracking control method for robotic vehicle navigation[J]. Computers and Electronics in Agriculture, 2019, 166: 104985. doi: 10.1016/j.compag.2019.104985.
    [80] QADIR M Z, PIAO Songhao, JIANG Haiyang, et al. A novel approach for multi-agent cooperative pursuit to capture grouped evaders[J]. The Journal of Supercomputing, 2020, 76(5): 3416–3426. doi: 10.1007/s11227-018-2591-3.
    [81] DE SOUZA C, NEWBURY R, COSGUN A, et al. Decentralized multi-agent pursuit using deep reinforcement learning[J]. IEEE Robotics and Automation Letters, 2021, 6(3): 4552–4559. doi: 10.1109/lra.2021.3068952.
    [82] ZHAO Liran, ZHANG Yulin, and DANG Zhaohui. PRD-MADDPG: An efficient learning-based algorithm for orbital pursuit-evasion game with impulsive maneuvers[J]. Advances in Space Research, 2023, 72(2): 211–230. doi: 10.1016/j.asr.2023.03.014.
    [83] QI Qi, ZHANG Xuebo, and GUO Xian. A deep reinforcement learning approach for the pursuit evasion game in the presence of obstacles[C]. 2020 IEEE International Conference on Real-time Computing and Robotics (RCAR), Asahikawa, Japan, 2020: 68–73. doi: 10.1109/RCAR49640.2020.9303044.
    [84] LIU Bingyan, YE Xiongbing, DONG Xianzhou, et al. Branching improved deep q networks for solving pursuit-evasion strategy solution of spacecraft[J]. Journal of Industrial and Management Optimization, 2022, 18(2): 1223–1245. doi: 10.3934/jimo.2021016.
    [85] ZHU Jiagang, ZOU Wei, and ZHU Zheng. Learning evasion strategy in pursuit-evasion by deep Q-network[C]. 2018 24th International Conference on Pattern Recognition (ICPR), Beijing, China, 2018: 67–72. doi: 10.1109/ICPR.2018.8546182.
    [86] GU Shanzhi, GENG Mingyang, and LAN Long. Attention-based fault-tolerant approach for multi-agent reinforcement learning systems[J]. Entropy, 2021, 23(9): 1133. doi: 10.3390/e23091133.
    [87] XU Lin, HU Bin, GUAN Zhihong, et al. Multi-agent deep reinforcement learning for pursuit-evasion game scalability[C]. Proceedings of 2019 Chinese Intelligent Systems Conference, Singapore, 2020: 658–669. doi: 10.1007/978-981-32-9682-4_69.
    [88] WAN Kaifang, WU Dingwei, ZHAI Yiwei, et al. An improved approach towards multi-agent pursuit-evasion game decision-making using deep reinforcement learning[J]. Entropy, 2021, 23(11): 1433. doi: 10.3390/e23111433.
    [89] HAMED O and HAMLICH M. Hybrid formation control for multi-robot hunters based on multi-agent deep deterministic policy gradient[J]. MENDEL, 2021, 27(2): 23–29. doi: 10.13164/mendel.2021.2.023.
    [90] 马俊冲. 基于多机器人系统的多目标围捕协同控制问题研究[D]. [硕士论文], 国防科技大学, 2018.

    MA Junchong. Research on encirclement control for a group of targets by multi-robot system[D]. [Master dissertation], National University of Defense Technology, 2018.
    [91] ZUO Renwei, LI Yinghui, LV Maolong, et al. Learning-based distributed containment control for HFV swarms under event-triggered communication[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(1): 568–579. doi: 10.1109/TAES.2022.3185969.
    [92] SUN Lijun, CHANG Yucheng, LYU Chao, et al. Toward multi-target self-organizing pursuit in a partially observable markov game[J]. Information Sciences, 2023, 648: 119475. doi: 10.1016/j.ins.2023.119475.
    [93] DONG Haotian and XI Junqiang. Model predictive longitudinal motion control for the unmanned ground vehicle with a trajectory tracking model[J]. IEEE Transactions on Vehicular Technology, 2022, 71(2): 1397–1410. doi: 10.1109/TVT.2021.3131314.
    [94] XIAO Zongxin, HU Minghui, FU Chunyun, et al. Model predictive trajectory tracking control of unmanned vehicles based on radial basis function neural network optimisation[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2023, 237(2/3): 347–361. doi: 10.1177/09544070221080158.
    [95] İŞCI H and GÜNEL G Ö. Fuzzy logic based air-to-air combat algorithm for unmanned air vehicles[J]. International Journal of Dynamics and Control, 2022, 10(1): 230–242. doi: 10.1007/s40435-021-00803-6.
    [96] LV Jiliang, QU Chenxi, DU Shaofeng, et al. Research on obstacle avoidance algorithm for unmanned ground vehicle based on multi-sensor information fusion[J]. Mathematical Biosciences and Engineering, 2021, 18(2): 1022–1039. doi: 10.3934/mbe.2021055.
    [97] LONG Qian, ZHOU Zihan, GUPTA A, et al. Evolutionary population curriculum for scaling multi-agent reinforcement learning[C]. 8th International Conference On Learning Representations, Addis Ababa, Ethiopia, 2020.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  741
  • HTML全文浏览量:  335
  • PDF下载量:  191
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-19
  • 修回日期:  2023-12-01
  • 网络出版日期:  2023-12-12
  • 刊出日期:  2024-02-29

目录

    /

    返回文章
    返回