高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于硬件损伤的认知反向散射通信网络鲁棒安全资源分配算法

徐勇军 姜思巧 张海波 王正强 周继华

徐勇军, 姜思巧, 张海波, 王正强, 周继华. 基于硬件损伤的认知反向散射通信网络鲁棒安全资源分配算法[J]. 电子与信息学报, 2024, 46(2): 652-661. doi: 10.11999/JEIT230117
引用本文: 徐勇军, 姜思巧, 张海波, 王正强, 周继华. 基于硬件损伤的认知反向散射通信网络鲁棒安全资源分配算法[J]. 电子与信息学报, 2024, 46(2): 652-661. doi: 10.11999/JEIT230117
XU Yongjun, JIANG Siqiao, ZHANG Haibo, WANG Zhengqiang, ZHOU Jihua. Robust Secure Resource Allocation Algorithm for Cognitive Backscatter Communication with Hardware Impairment[J]. Journal of Electronics & Information Technology, 2024, 46(2): 652-661. doi: 10.11999/JEIT230117
Citation: XU Yongjun, JIANG Siqiao, ZHANG Haibo, WANG Zhengqiang, ZHOU Jihua. Robust Secure Resource Allocation Algorithm for Cognitive Backscatter Communication with Hardware Impairment[J]. Journal of Electronics & Information Technology, 2024, 46(2): 652-661. doi: 10.11999/JEIT230117

基于硬件损伤的认知反向散射通信网络鲁棒安全资源分配算法

doi: 10.11999/JEIT230117
基金项目: 国家自然科学基金(62271094),重庆市教委科学技术研究项目(KJZD-K202200601),中国博士后科学基金(2022MD723725),四川省区域创新合作项目(2022YFQ0017)
详细信息
    作者简介:

    徐勇军:男,副教授,博士生导师,研究方向为反向散射通信、鲁棒资源分配

    姜思巧:女,硕士生,研究方向为反向散射、鲁棒资源分配

    张海波:男,副教授,硕士生导师,研究方向为无线网络、资源分配等

    王正强:男,副教授,研究方向为无线网络、资源分配

    周继华:男,研究员,博士生导师,研究方向为无线网络、资源分配等

    通讯作者:

    徐勇军 xuyj@cqupt.edu.cn

  • 中图分类号: TN929

Robust Secure Resource Allocation Algorithm for Cognitive Backscatter Communication with Hardware Impairment

Funds: The National Natural Science Foundation of China (62271094), The Scientific and Technological Research Program of Chongqing Municipal Education Commission (KJZD-K202200601), The China Postdoctoral Science Foundation (2022MD723725), The Sichuan Regional Innovation Cooperation Project (2022YFQ0017)
  • 摘要: 为了提高反向散射通信网络频谱效率、传输鲁棒性及信息安全性,该文提出一种基于硬件损伤的认知反向散射通信网络鲁棒安全资源分配算法。首先,考虑认知反向散射用户的最小安全速率、传输时间、能量收集和反射系数等约束,基于有界信道不确定性和频谱感知误差模型,建立一个多变量耦合的吞吐量最大化非凸资源分配问题。其次,利用最坏准则、连续凸近似和交替优化方法,将原问题转换为凸优化问题,并提出一种基于迭代的鲁棒资源分配算法。仿真结果表明,与现有算法对比,所提算法具有较好的鲁棒性。
  • 图  1  认知反向散射通信网络

    图  2  算法求解流程图

    图  3  算法收敛分析图

    图  4  系统保密吞吐量与$ {\delta _{\text{E}}} $的关系

    图  5  系统吞吐量与${P_0}$的关系

    图  6  系统保密吞吐量与$ r_k^{{\text{B,min}}} $的关系

    图  7  不同算法与$ I_{k,m}^{\max } $的关系

    图  8  信道不确定性对中断概率的影响

    表  1  频谱检测情况

    授权频谱状态授权频谱感知结果条件感知概率
    占用$ \left( O \right) $占用$ \left( {\tilde O} \right) $${\rho ^1} = \Pr \{ O|\tilde O\} = \dfrac{ {\left( {1 - {q^{ {\text{md} } } }} \right){q^{\text{o} } } }}{ { {q^{ {\text{fa} } } }\left( {1 - {q^{\text{o} } } } \right) + \left( {1 - {q^{ {\text{md} } } }} \right){q^{\text{o} } } }}$
    空闲$ \left( V \right) $占用$ \left( {\tilde O} \right) $${\rho ^2} = \Pr \{ V|\tilde O\} = \dfrac{ { {q^{ {\text{fa} } } }\left( {1 - {q^{\text{o} } } } \right)} }{ { {q^{ {\text{fa} } } }\left( {1 - {q^{\text{o} } } } \right) + \left( {1 - {q^{ {\text{md} } } }} \right){q^{\text{o} } } }}$
    占用$ \left( O \right) $空闲$ \left( {\tilde V} \right) $${\rho ^3} = \Pr \{ O|\tilde V\} = \dfrac{ { {q^{ {\text{md} } } }{q^{\text{o} } } }}{ {\left( {1 - {q^{ {\text{fa} } } }} \right)\left( {1 - {q^{\text{o} } } } \right) + {q^{ {\text{md} } } }{q^{\text{o} } } }}$
    空闲$ \left( V \right) $空闲$ \left( {\tilde V} \right) $${\rho ^4} = \Pr \{ V|\tilde V\} = \dfrac{ {\left( {1 - {q^{ {\text{fa} } } }} \right)\left( {1 - {q^{\text{o} } } } \right)} }{ {\left( {1 - {q^{ {\text{fa} } } }} \right)\left( {1 - {q^{\text{o} } } } \right) + {q^{ {\text{md} } } }{q^{\text{o} } } }}$
    下载: 导出CSV
    算法1 基于迭代的鲁棒资源分配算法
     初始化系统参数:$ {P_0} $, $ M $, $ K $, $ f_m^{\text{P}} $, $ {f_{\text{P}}} $, $ {f_k} $, $ {h_k} $, $ {g_k} $, $ {g_{k,m}} $, $ {f_{\text{E}}} $, $ I_{k,m}^{{\text{max}}} $, $ r_k^{{\text{B,min}}} $, $ r_k^{{\text{A,min}}} $, $ \sigma _{\text{U}}^2 $, $ \sigma _{\text{E}}^2 $, $ \kappa _k^{\text{F}} $, $ {\kappa _{\text{R}}} $, ${T_{\rm{A}}}$, ${T_{\rm{B}}}$, $P_k^{\text{C}}$, $p_k^{\text{C}}$, $ \delta _k^{\text{G}} $, $ {\delta _{\text{E}}} $, $ {q^{{\text{fa}}}} $,
     $ {q^{{\text{md}}}} $, $ {q^{\text{o}}} $, $R_{{\text{sum}}}^{\left( 0 \right)}$;定义算法收敛精度$\eta > 0$和外层最大迭代次数${L_{\max }}$;初始化外层迭代次数$l = 0$;
     (1) while$|R_{ {\text{sum} } }^{\left( l \right)} - R_{ {\text{sum} } }^{\left( {l - 1} \right)}| \ge \eta$或$l \le {L_{\max } }$,do
     (2) 定义迭代次数$l = l + 1$;
     (3) 给定${ \tau_k^{{\rm{B}}{\left( {l - 1} \right)} } }$和${\tau_k^{ {\text{A} }{\left( {l - 1} \right)} } }$的值,根据P4-1计算$ \beta _k^{(l)} $和$ p_k^{(l)} $;
     (4) 固定$ \beta _k^{(l)} $和$ p_k^{(l)} $,根据P4-2计算${\tau_k^{{\rm{B}}{\left( l \right)} } }$和${\tau_k^{{\text{A}} \left( l \right)} }$;
     (5) 更新吞吐量$R_{{\text{sum}}}^{\left( l \right)}$;
     (6) end while
     (7) 输出$\tau _k^{\rm{B}}$, $ \tau _k^{\text{A}} $, $ {\beta _k} $, $ {p_k} $
    下载: 导出CSV
  • [1] XU Yongjun, GUI Guan, GACANIN H, et al. A survey on resource allocation for 5G heterogeneous networks: Current research, future trends, and challenges[J]. IEEE Communications Surveys & Tutorials, 2021, 23(2): 668–695. doi: 10.1109/COMST.2021.3059896.
    [2] XU Yongjun, GU Bowen, HU R Q, et al. Joint computation offloading and radio resource allocation in MEC-based wireless-powered backscatter communication networks[J]. IEEE Transactions on Vehicular Technology, 2021, 70(6): 6200–6205. doi: 10.1109/TVT.2021.3077094.
    [3] 张晓茜, 徐勇军. 面向零功耗物联网的反向散射通信综述[J]. 通信学报, 2022, 43(11): 199–212. doi: 10.11959/j.issn.1000-436x.2022199.

    ZHANG Xiaoxi and XU Yongjun. Survey on backscatter communication for zero-power IoT[J]. Journal on Communications, 2022, 43(11): 199–212. doi: 10.11959/j.issn.1000-436x.2022199.
    [4] 徐勇军, 杨浩克, 李国军, 等. 多标签无线供电反向散射通信网络能效优化算法[J]. 电子与信息学报, 2022, 44(10): 3492–3498. doi: 10.11999/JEIT210772.

    XU Yongjun, YANG Haoke, LI Guojun, et al. Energy-efficient optimization algorithm in multi-tag wireless-powered backscatter communication networks[J]. Journal of Electronics &Information Technology, 2022, 44(10): 3492–3498. doi: 10.11999/JEIT210772.
    [5] 徐勇军. 下垫式认知无线电网络动态资源分配问题研究[D]. [博士论文]. 吉林大学, 2015.

    XU Yongjun. Research on dynamic resource allocation for underlay cognitive radio networks[D]. [Ph. D. dissertation]. Jilin University, 2015.
    [6] LI Xingwang, ZHENG Yike, KHAN W U, et al. Physical layer security of cognitive ambient backscatter communications for green internet-of-things[J]. IEEE Transactions on Green Communications and Networking, 2021, 5(3): 1066–1076. doi: 10.1109/TGCN.2021.3062060.
    [7] LI Xingwang, WANG Qunshu, ZENG Ming, et al. Physical-layer authentication for ambient backscatter-aided NOMA symbiotic systems[J]. IEEE Transactions on Communications, 2023, 71(4): 2288–2303. doi: 10.1109/TCOMM.2023.3245659.
    [8] XU Yongjun, XIE Hao, LI Dong, et al. Energy-efficient beamforming for heterogeneous industrial IoT networks with phase and distortion noises[J]. IEEE Transactions on Industrial Informatics, 2022, 18(11): 7423–7434. doi: 10.1109/TII.2022.3158612.
    [9] LI Xingwang, LIU Huiling, LI Geng, et al. Effective capacity analysis of AmBC-NOMA communication systems[J]. IEEE Transactions on Vehicular Technology, 2022, 71(10): 11257–11261. doi: 10.1109/TVT.2022.3186871.
    [10] JAFARI R and FAPOJUWO A O. Maximizing secondary users’ sum-throughput in an in-band full-duplex cognitive wireless powered backscatter communication network[J]. IEEE Systems Journal, 2022, 16(3): 4082–4093. doi: 10.1109/JSYST.2021.3124097.
    [11] XIAO Sa, GUO Huayan, and LIANG Yingchang. Resource allocation for full-duplex-enabled cognitive backscatter networks[J]. IEEE Transactions on Wireless Communications, 2019, 18(6): 3222–3235. doi: 10.1109/TWC.2019.2912203.
    [12] LYU Bin, GUO Haiyan, YANG Zhen, et al. Throughput maximization for hybrid backscatter assisted cognitive wireless powered radio networks[J]. IEEE Internet of Things Journal, 2018, 5(3): 2015–2024. doi: 10.1109/JIOT.2018.2820180.
    [13] KANG Xin, LIANG Yingchang, and YANG Jing. Riding on the primary: A new spectrum sharing paradigm for wireless-powered IoT devices[J]. IEEE Transactions on Wireless Communications, 2018, 17(9): 6335–6347. doi: 10.1109/TWC.2018.2859389.
    [14] ZHUANG Yuandong, LI Xi, JI Hong, et al. Optimal resource allocation for RF-powered underlay cognitive radio networks with ambient backscatter communication[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 15216–15228. doi: 10.1109/TVT.2020.3037152.
    [15] KISHORE R, GURUGOPINATH S, SOFOTASIOS P C, et al. Opportunistic ambient backscatter communication in RF-powered cognitive radio networks[J]. IEEE Transactions on Cognitive Communications and Networking, 2019, 5(2): 413–426. doi: 10.1109/TCCN.2019.2907090.
    [16] ZHANG Yu, GAO Feifei, FAN Lisheng, et al. Secure communications for multi-tag backscatter systems[J]. IEEE Wireless Communications Letters, 2019, 8(4): 1146–1149. doi: 10.1109/LWC.2019.2909199.
    [17] WANG Pu, WANG Ning, DABAGHCHIAN M, et al. Optimal resource allocation for secure multi-user wireless powered backscatter communication with artificial noise[C]// IEEE Conference on Computer Communications, Paris, France, 2019: 460–468.
    [18] XU Yongjun, GU Bowen, and LI Dong. Robust energy-efficient optimization for secure wireless-powered backscatter communications with a non-linear EH model[J]. IEEE Communications Letters, 2021, 25(10): 3209–3213. doi: 10.1109/LCOMM.2021.3097737.
    [19] XU Yongjun, XIE Hao, WU Qingqing, et al. Robust max-min energy efficiency for RIS-aided HetNets with distortion noises[J]. IEEE Transactions on Communications, 2022, 70(2): 1457–1471. doi: 10.1109/TCOMM.2022.3141798.
    [20] YE Yinghui, SHI Liqin, CHU Xiaoli, et al. Mutualistic cooperative ambient backscatter communications under hardware impairments[J]. IEEE Transactions on Communications, 2022, 70(11): 7656–7668. doi: 10.1109/TCOMM.2022.3201119.
    [21] XU Yongjun, YANG Meng, YANG Yang, et al. Max-min energy-efficient optimization for cognitive heterogeneous networks with spectrum sensing errors and channel uncertainties[J]. IEEE Wireless Communications Letters, 2022, 11(6): 1113–1117. doi: 10.1109/LWC.2021.3130632.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  362
  • HTML全文浏览量:  134
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-01
  • 修回日期:  2023-05-11
  • 网络出版日期:  2023-05-18
  • 刊出日期:  2024-02-29

目录

    /

    返回文章
    返回