高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于不完美CSI的低轨卫星通信系统鲁棒资源分配算法

吴翠先 董燚恒 徐勇军 张海波 薛青

吴翠先, 董燚恒, 徐勇军, 张海波, 薛青. 基于不完美CSI的低轨卫星通信系统鲁棒资源分配算法[J]. 电子与信息学报, 2024, 46(2): 671-679. doi: 10.11999/JEIT230086
引用本文: 吴翠先, 董燚恒, 徐勇军, 张海波, 薛青. 基于不完美CSI的低轨卫星通信系统鲁棒资源分配算法[J]. 电子与信息学报, 2024, 46(2): 671-679. doi: 10.11999/JEIT230086
WU Cuixian, DONG Yiheng, XU Yongjun, ZHANG Haibo, XUE Qing. Robust Resource Allocation Algorithm for Low Orbit Satellite Communication System Based on Imperfect CSI[J]. Journal of Electronics & Information Technology, 2024, 46(2): 671-679. doi: 10.11999/JEIT230086
Citation: WU Cuixian, DONG Yiheng, XU Yongjun, ZHANG Haibo, XUE Qing. Robust Resource Allocation Algorithm for Low Orbit Satellite Communication System Based on Imperfect CSI[J]. Journal of Electronics & Information Technology, 2024, 46(2): 671-679. doi: 10.11999/JEIT230086

基于不完美CSI的低轨卫星通信系统鲁棒资源分配算法

doi: 10.11999/JEIT230086
基金项目: 国家自然科学基金(62271094, U21A20448),重庆市教委科学技术研究项目(KJZD-K202200601),重庆市自然科学重点基金(CSTB2022NSCQ-LZX0009),浙江省信息处理与通信网络重点实验室开放课题(IPCAN-2302, IPCAN-2303)
详细信息
    作者简介:

    吴翠先:女,正高级工程师,硕士生导师,研究方向为卫星通信、鲁棒资源分配

    董燚恒:男,硕士生,研究方向为卫星通信、鲁棒资源分配

    徐勇军:男,副教授,博士生导师,研究方向为卫星通信、鲁棒资源分配等

    张海波:男,副教授,硕士生导师,研究方向为卫星通信、无线网络资源分配、车联网等

    薛青:女,讲师,硕士生导师,研究方向为卫星通信、无线网络资源分配、毫米波无线通信等

    通讯作者:

    徐勇军 xuyj@cqupt.edu.cn

  • 中图分类号: TN927+.2

Robust Resource Allocation Algorithm for Low Orbit Satellite Communication System Based on Imperfect CSI

Funds: The National Natural Science Foundation of China (62271094, U21A20448), The Scientific and Technological Research Program of Chongqing Municipal Education Commission (KJZD-K202200601), The Key Fund of Natural Science Foundation of Chongqing (CSTB2022NSCQ-LZX0009), The Open Project of Zhejiang Provincial Key Laboratory of Information Processing, Communication and Networking (IPCAN-2302, IPCAN-2303)
  • 摘要: 为了解决低轨卫星通信系统因资源受限导致的能量与速率不平衡的问题,同时考虑信道不确定性对实际卫星通信系统性能衰退的影响,该文提出一种基于最大化最小能效的鲁棒资源分配算法。首先,考虑每个用户中断速率约束、功率分配系数约束和最大发射功率约束,基于高斯信道不确定性,构建了联合优化卫星波束成形向量与功率分配因子的鲁棒资源分配模型。所描述的问题是一个含参数摄动的非凸、非确定性多项式难问题,很难直接求解。为此,基于丁克尔巴赫、伯恩斯坦不等式、半正定松弛和交替优化等方法将其转化为等价的凸优化问题,并提出一种基于迭代的混合鲁棒波束成形与功率分配算法。仿真结果表明,该文算法具有较好的能效和较强的鲁棒性。
  • 图  1  系统模型

    图  2  用户能效收敛图

    图  3  用户能效与功率分配因子的关系

    图  4  用户能效与速率门限在不同算法下的关系

    图  5  用户能效与信道误差的方差在不同算法下的关系

    图  6  中断概率与信道误差的方差在不同算法下的关系

    1  基于二分法的能效优化策略

    初始化$ \eta _{m,n}^ + $和$ \eta _{m,n}^ - $;
    (1) $f(\eta _{m,n}^ + ) > 0$,$f(\eta _{m,n}^ - ) < 0$;
    (2) 设置阈值${\chi _1}$和迭代次数${t_1}$,${t_1} = 0$;
    (3) repeat
    (4) 更新$ \eta _{m,n}^{({t_1})} \leftarrow (\eta _{m,n}^ + + \eta _{m,n}^ - )/2 $;
    (5) 求解问题式(17),得到最优解$f(\eta _{m,n}^{({t_1})})$;
    (6) if $f(\eta _{m,n}^{({t_1})}) \ge 0$ then
    (7) 更新$ \eta _{m,n}^ + \leftarrow \eta _{m,n}^{({t_1})} $;
    (8) 否则$ \eta _{m,n}^ - \leftarrow \eta _{m,n}^{({t_1})} $;
    (9) 结束并更新${t_1} = {t_1} + 1$;
    (10)直到$ |f(\eta _{m,n}^{({t_1})})| < {\chi _1} $;
    获得最优$\eta _{m,n}^ * = \eta _{m,n}^{({t_1})}$。
    下载: 导出CSV

    2  基于迭代的混合鲁棒波束成形和功率分配算法

     初始化$K$,$M$, $N$, $\sigma _{m,n}^2$, $ P_{m,n}^{cir} $, $ R_{m,n}^{\min } $, $ R_k^{\min } $, $ {\varepsilon _{m,n}} $, $ {\varepsilon _k} $,
     $ {\delta _{m,n}} $,
     $ {\delta _k} $,$ {\mu _{m,n}} $, $ {\mu _k} $;设置误差精度${\chi _2}$和迭代次数${t_2}$,初始化${t_2} = 0$;
     (1) repeat
     (2) 设置初始功率分配系数$\alpha _{m,n}^{({t_2})}$;
     (3) if $\alpha _{m,n}^{({t_2})} - \alpha _{m,n}^{({t_2} - 1)} \ge {\chi _2}$ then
     (4) 更新${t_2} = {t_2} + 1$;
     (5) 否则求解问题(37)获得最优${\boldsymbol{W}}_m^ * = {\boldsymbol{W}}_m^{ {\text{(} }{t_2}{\text{)} } }$;
     (6) 再求解最优$\alpha _{m,n}^ * $,对${\boldsymbol{W}}_m^ *$使用特征值分解获得${\boldsymbol{w}}_m^ *$;
     结束;
    下载: 导出CSV

    表  1  具体仿真参数

    参数参数参数
    卫星LEO加性高斯白噪声方差0.1雨衰方差(dB)1.63
    卫星高度(km)1000玻尔兹曼常数(J/K)1.38 × 10–23带宽(MHz)30
    波束数量3最大卫星天线增益(dBi)17载波频率(GHz)20
    卫星馈电天线数18雨衰均值(dB)–2.63 dB角0.4°
    下载: 导出CSV
  • [1] 王宁远, 陈东, 刘亮, 等. 未来低轨信息网络发展与架构展望[J]. 电子与信息学报, 2023, 45(2): 396–406. doi: 10.11999/JEIT211400.

    WANG Ningyuan, CHEN Dong, LIU Liang, et al. Development trend and architecture prospect of future low-earth-orbit information networks[J]. Journal of Electronics &Information Technology, 2023, 45(2): 396–406. doi: 10.11999/JEIT211400.
    [2] XU Yongjun, GUI Guan, GACANIN H, et al. A survey on resource allocation for 5G heterogeneous networks: Current research, future trends, and challenges[J]. IEEE Communications Surveys & Tutorials, 2021, 23(2): 668–695. doi: 10.1109/COMST.2021.3059896.
    [3] XU Yongjun, XIE Hao, WU Qingqing, et al. Robust max-min energy efficiency for RIS-aided HetNets with distortion noises[J]. IEEE Transactions on Communications, 2022, 70(2): 1457–1471. doi: 10.1109/TCOMM.2022.3141798.
    [4] 孙士勇, 王薇, 顾晨伟, 等. 基于公平效用函数的多波束卫星通信下行链路波束成形算法[J]. 电子与信息学报, 2022, 44(9): 3024–3032. doi: 10.11999/JEIT220409.

    SUN Shiyong, WANG Wei, GU Chenwei, et al. Beamforming algorithm based on fair utility function for multibeam satellite communication downlink transmission[J]. Journal of Electronics &Information Technology, 2022, 44(9): 3024–3032. doi: 10.11999/JEIT220409.
    [5] LI Bin, FEI Zesong, CHU Zheng, et al. Robust chance-constrained secure transmission for cognitive satellite–terrestrial networks[J]. IEEE Transactions on Vehicular Technology, 2018, 67(5): 4208–4219. doi: 10.1109/TVT.2018.2791859.
    [6] JOUDEH H and CLERCKX B. Rate-splitting for max-min fair multigroup multicast beamforming in overloaded systems[J]. IEEE Transactions on Wireless Communications, 2017, 16(11): 7276–7289. doi: 10.1109/TWC.2017.2744629.
    [7] ZHU Xiangming, JIANG Chunxiao, YIN Liuguo, et al. Cooperative multigroup multicast transmission in integrated terrestrial-satellite networks[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(5): 981–992. doi: 10.1109/JSAC.2018.2832780.
    [8] ZHANG Yuandong, YIN Liuguo, JIANG Chunxiao, et al. Joint beamforming design and resource allocation for terrestrial-satellite cooperation system[J]. IEEE Transactions on Communications, 2020, 68(2): 778–791. doi: 10.1109/TCOMM.2019.2950022.
    [9] CHU Jianhang, CHEN Xiaoming, ZHONG Caijun, et al. Robust design for NOMA-based multibeam LEO satellite internet of things[J]. IEEE Internet of Things Journal, 2021, 8(3): 1959–1970. doi: 10.1109/JIOT.2020.3015995.
    [10] ZHU Yazhou, DELAMOTTE T, and KNOPP A. Geographical NOMA-beamforming in multi-beam satellite-based internet of things[C]. 2019 IEEE Global Communications Conference, Waikoloa, USA, 2019: 1–6.
    [11] LIN Zhi, LIN Min, WANG Junbo, et al. Joint beamforming and power allocation for satellite-terrestrial integrated networks with nonorthogonal multiple access[J]. IEEE Journal of Selected Topics in Signal Processing, 2019, 13(3): 657–670. doi: 10.1109/JSTSP.2019.2899731.
    [12] YOU Li, LIU Ao, WANG Wenjin, et al. Outage constrained robust multigroup multicast beamforming for multi-beam satellite communication systems[J]. IEEE Wireless Communications Letters, 2019, 8(2): 352–355. doi: 10.1109/LWC.2018.2872710.
    [13] XIAO Yi, MISHRA D, YUAN Jinhong, et al. Proportionally fair robust beamforming for multicast multibeam satellite systems[J]. IEEE Communications Letters, 2022, 26(1): 128–132. doi: 10.1109/LCOMM.2021.3118567.
    [14] YAN Yan, AN Kang, ZHANG Bangning, et al. Outage-constrained robust multigroup multicast beamforming for satellite-based internet of things coexisting with terrestrial networks[J]. IEEE Internet of Things Journal, 2021, 8(10): 8159–8172. doi: 10.1109/JIOT.2020.3042831.
    [15] WANG Wenjin, GAO Linna, DING Rui, et al. Resource efficiency optimization for robust beamforming in multi-beam satellite communications[J]. IEEE Transactions on Vehicular Technology, 2021, 70(7): 6958–6968. doi: 10.1109/TVT.2021.3087744.
    [16] WANG Zining, LIN Min, SUN Shiyong, et al. Robust beamforming for enhancing user fairness in multibeam satellite systems with NOMA[J]. IEEE Transactions on Vehicular Technology, 2022, 71(1): 1010–1014. doi: 10.1109/TVT.2021.3124928.
    [17] VÁZQUEZ M Á, PÉREZ-NEIRA A, CHRISTOPOULOS D, et al. Precoding in multibeam satellite communications: Present and future challenges[J]. IEEE Wireless Communications, 2016, 23(6): 88–95. doi: 10.1109/MWC.2016.1500047WC.
    [18] XU Yongjun, ZHAO Xiaohui, and LIANG Yingchang. Robust power control and beamforming in cognitive radio networks: A survey[J]. IEEE Communications Surveys & Tutorials, 2015, 17(4): 1834–1857. doi: 10.1109/COMST.2015.2425040.
    [19] DINKELBACH W. On nonlinear fractional programming[J]. Management Science, 1967, 13(7): 492–498. doi: 10.1287/MNSC.13.7.492.
    [20] BECHAR I. A Bernstein-type inequality for stochastic processes of quadratic forms of Gaussian variables[J]. arXiv: 0909.3595, 2009.
    [21] LUO Zhiquan, MA W K, SO A M C, et al. Semidefinite relaxation of quadratic optimization problems[J]. IEEE Signal Processing Magazine, 2010, 27(3): 20–34. doi: 10.1109/MSP.2010.936019.
    [22] WANG Kunyu, SO A M C, CHANG T H, et al. Outage constrained robust transmit optimization for multiuser MISO downlinks: Tractable approximations by conic optimization[J]. IEEE Transactions on Signal Processing, 2014, 62(21): 5690–5705. doi: 10.1109/TSP.2014.2354312.
    [23] LU Weixin, AN Kang, and LIANG Tao. Robust beamforming design for sum secrecy rate maximization in multibeam satellite systems[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(3): 1568–1572. doi: 10.1109/TAES.2019.2905306.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  624
  • HTML全文浏览量:  374
  • PDF下载量:  93
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-22
  • 修回日期:  2023-07-13
  • 网络出版日期:  2023-07-19
  • 刊出日期:  2024-02-29

目录

    /

    返回文章
    返回