高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于动态规整与改进变分自编码器的异常电池在线检测方法

郭铁峰 贺建军 申帅 王翔 张彬汉

郭铁峰, 贺建军, 申帅, 王翔, 张彬汉. 基于动态规整与改进变分自编码器的异常电池在线检测方法[J]. 电子与信息学报, 2024, 46(2): 738-747. doi: 10.11999/JEIT230084
引用本文: 郭铁峰, 贺建军, 申帅, 王翔, 张彬汉. 基于动态规整与改进变分自编码器的异常电池在线检测方法[J]. 电子与信息学报, 2024, 46(2): 738-747. doi: 10.11999/JEIT230084
GUO Tiefeng, HE Jianjun, SHEN Shuai, WANG Xiang, ZHANG Binhan. Abnormal Battery On-line Detection Method Based on Dynamic Time Warping and Improved Variational Auto-Encoder[J]. Journal of Electronics & Information Technology, 2024, 46(2): 738-747. doi: 10.11999/JEIT230084
Citation: GUO Tiefeng, HE Jianjun, SHEN Shuai, WANG Xiang, ZHANG Binhan. Abnormal Battery On-line Detection Method Based on Dynamic Time Warping and Improved Variational Auto-Encoder[J]. Journal of Electronics & Information Technology, 2024, 46(2): 738-747. doi: 10.11999/JEIT230084

基于动态规整与改进变分自编码器的异常电池在线检测方法

doi: 10.11999/JEIT230084
基金项目: 国家重点研发计划(2020YFB1710600)
详细信息
    作者简介:

    郭铁峰:男,博士生,研究方为智能检测与控制、机器学习等

    贺建军:男,教授,博士生导师,研究方向为智能检测与控制、机器学习、系统建模与优化控制等

    申帅:男,博士生,研究方向为智能检测、自动控制和机器学习

    王翔:男,博士生,研究方向为稀疏表示、深度学习等

    张彬汉:男,硕士生,研究方向为稀疏表示、深度学习等

    通讯作者:

    贺建军 jjhe@csu.edu.cn

  • 中图分类号: TN911; TP183

Abnormal Battery On-line Detection Method Based on Dynamic Time Warping and Improved Variational Auto-Encoder

Funds: National Key R&D Program of China (2020YFB1710600)
  • 摘要: 针对电池生产成组过程中,传统异常检测方法对混入的容量及压差异常电池检测精度低及生产结束后离线异常检测方法效率低等问题,该文提出一种集合长短期记忆变分自编码器与动态时间规整评价的锂电池异常在线检测方法(VAE-LSTM-DTW),实现了异常电池的在线检测,避免了离线异常检测所造成的时间和能源的浪费。该方法首先将长短期记忆网络(LSTM)引入变分自编码器(VAE)模型,训练电池时序数据重构模型;其次,在电池异常检测的度量标准中引入动态时间规整值(DTW),并基于贝叶斯寻优获得最优检测阈值,对每个单体电池重构数据的动态规整值进行异常辨别。实验结果表明,相较该领域传统异常检测方法,VAE-LSTM-DTW模型性能优越,查准率和F1值都得到了较大的提升,具有较高的有效性和实用性。
  • 图  1  锂电池异常检测模型结构图

    图  2  变分自编码器模型结构图

    图  3  VAE-LSTM模型结构图

    图  4  DTW最优路径

    图  5  生产现场化成分容设备图

    图  6  原始数据集曲线图

    图  7  重构模型训练损失函数变化

    图  8  异常电池充电曲线分类图

    图  9  DTW分布箱线图

    图  10  阈值寻优流程图

    图  11  4类度量标准检测结果分布对比图

    图  12  消融实验异常检测结果分布对比图

    表  1  数据集构建情况表

    数据集分类正常电池
    (个 )
    正常占比(%)异常电池(个)异常占比(%)
    重构训练集4 00010000
    评价阈值训练集4 000504 00050
    测试集4 000504 00050
    下载: 导出CSV

    表  2  阈值确定10折验证实验结果表

    实验轮次阈值训练集阈值测试集平均最优阈值
    最优阈值F1值F1值
    10.21750.97760.97490.2169
    20.21690.97660.9836
    30.21590.97700.9810
    40.21640.97790.9710
    50.21690.97730.9773
    60.21590.97730.9774
    70.21710.97800.9707
    80.21760.97760.9748
    90.21790.97620.9887
    100.21690.97770.9735
    下载: 导出CSV

    表  3  重构效果度量标准对比实验

    距离准确率(%)查准率(%)召回率(%)F1值阈值
    Euclidean62.871.972.60.720.0873
    Frechet65.078.665.30.710.5202
    Hausdorff82.789.783.70.870.0150
    DTW91.295.191.70.930.2169
    下载: 导出CSV

    表  4  机器学习模型异常检测对比实验

    模型准确率(%)查准率(%)召回率(%)F1值
    OCSVM67.261.095.40.744
    LOF68.263.088.70.736
    IForest62.457.198.00.725
    VAE-LSTM-DTW91.194.991.70.933
    下载: 导出CSV

    表  5  模型异常检测消融实验结果

    模型准确率(%)查准率(%)召回率(%)F1值阈值单体电池检测时间(s)
    VAE68.971.987.50.795.1× 10–50.002
    VAE-LSTM73.276.083.40.794.3 × 10–50.014
    VAE-DTW87.890.691.20.910.20520.075
    VAE-LSTM-DTW91.194.991.70.930.21690.084
    下载: 导出CSV
  • [1] 肖健夫, 孙瑞, 闵婕, 等. 锂离子动力电池系统故障检测[J]. 电源技术, 2021, 45(6): 736–739,790. doi: 10.3969/j.issn.1002-087X.2021.06.012.

    XIAO Jianfu, SUN Rui, MIN Jie, et al. Fault detection of lithium-ion power battery system[J]. Chinese Journal of Power Sources, 2021, 45(6): 736–739,790. doi: 10.3969/j.issn.1002-087X.2021.06.012.
    [2] 马速良, 武亦文, 李建林, 等. 聚类分析架构下基于遗传算法的电池异常数据检测方法[J]. 电网技术, 2023, 47(2): 859–867. doi: 10.13335/j.1000-3673.pst.2021.1871.

    MA Suliang, WU Yiwen, LI Jianlin, et al. Anomaly detection for battery data based on genetic algorithm under cluster analysis framework[J]. Power System Technology, 2023, 47(2): 859–867. doi: 10.13335/j.1000-3673.pst.2021.1871.
    [3] JIN Ruochen, WEI Bo, LUO Yongmei, et al. Blockchain-based data collection with efficient anomaly detection for estimating battery state-of-health[J]. IEEE Sensors Journal, 2021, 21(12): 13455–13465. doi: 10.1109/JSEN.2021.3066785.
    [4] SAXENA S, KANG M, XING Y J, et al. Anomaly detection during lithium-ion battery qualification testing[C]. 2018 IEEE International Conference on Prognostics and Health Management, Seattle, USA, 2018: 1–6.
    [5] 董书琴, 张斌. 基于深度特征学习的网络流量异常检测方法[J]. 电子与信息学报, 2020, 42(3): 695–703. doi: 10.11999/JEIT190266.

    DONG Shuqin and ZHANG Bin. Network traffic anomaly detection method based on deep features learning[J]. Journal of Electronics &Information Technology, 2020, 42(3): 695–703. doi: 10.11999/JEIT190266.
    [6] KINGMA D P and WELLING M. Auto-encoding variational Bayes[C]. The 2nd International Conference on Learning Representations, Banff, Canada, 2014.
    [7] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139–144. doi: 10.1145/3422622.
    [8] AN J and CHO S. Variational autoencoder based anomaly detection using reconstruction probability[J]. Special Lecture on IE, 2015, 2(1): 1–18.
    [9] 秦婉亭, 老松杨, 汤俊, 等. 基于变分自编码器的飓风轨迹异常检测方法[J]. 系统仿真学报, 2021, 33(9): 2191–2201. doi: 10.16182/j.issn1004731x.joss.20-0369.

    QIN Wanting, LAO Songyang, TANG Jun, et al. Hurricane trajectory outlier detection method based on variational auto-encode[J]. Journal of System Simulation, 2021, 33(9): 2191–2201. doi: 10.16182/j.issn1004731x.joss.20-0369.
    [10] 常吉亮, 谢磊, 赵建伟, 等. 基于VAE-LSTM模型的航迹异常检测算法[J]. 交通信息与安全, 2020, 38(6): 1–8. doi: 10.3963/j.jssn.1674-4861.2020.06.001.

    CHANG Jiliang, XIE Lei, ZHAO Jianwei, et al. An anomaly detection algorithm for ship trajectory data based on VAE-LSTM model[J]. Journal of Transport Information and Safety, 2020, 38(6): 1–8. doi: 10.3963/j.jssn.1674-4861.2020.06.001.
    [11] ZHOU Chong and PAFFENROTH R C. Anomaly detection with robust deep autoencoders[C]. The 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, Canada, 2017: 665–674.
    [12] LI Junying, REN Weijie, and HAN Min. Variational auto-encoders based on the shift correction for imputation of specific missing in multivariate time series[J]. Measurement, 2021, 186: 110055. doi: 10.1016/j.measurement.2021.110055.
    [13] HOCHREITER S and SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735–1780. doi: 10.1162/neco.1997.9.8.1735.
    [14] BERNDT D J and CLIFFORD J. Using dynamic time warping to find patterns in time series[C]. The 3rd International Conference on Knowledge Discovery and Data Mining, Seattle, USA, 1994: 359–370.
    [15] SHAHRIARI B, SWERSKY K, WANG Ziyu, et al. Taking the human out of the loop: A review of Bayesian optimization[J]. Proceedings of the IEEE, 2016, 104(1): 148–175. doi: 10.1109/JPROC.2015.2494218.
    [16] FRÉCHET M M. Sur quelques points du calcul fonctionnel[J]. Rendiconti del Circolo Matematico di Palermo (1884–1940), 1906, 22(1): 1–72. doi: 10.1007/BF03018603.
    [17] TAHA A A and HANBURY A. An efficient algorithm for calculating the exact Hausdorff distance[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(11): 2153–2163. doi: 10.1109/TPAMI.2015.2408351.
    [18] SCHÖLKOPF B, PLATT J C, SHAWE-TAYLOR J, et al. Estimating the support of a high-dimensional distribution[J]. Neural Computation, 2001, 13(7): 1443–1471. doi: 10.1162/089976601750264965.
    [19] LI Lu, HUANG Liusheng, YANG Wei, et al. Privacy-preserving LOF outlier detection[J]. Knowledge and Information Systems, 2015, 42(3): 579–597. doi: 10.1007/s10115-013-0692-0.
    [20] 王诚, 狄萱. 孤立森林算法研究及并行化实现[J]. 计算机技术与发展, 2021, 31(6): 13–18. doi: 10.3969/j.issn.1673-629X.2021.06.003.

    WANG Cheng and DI Xuan. Research and parallelization of isolation forest algorithm[J]. Computer Technology and Development, 2021, 31(6): 13–18. doi: 10.3969/j.issn.1673-629X.2021.06.003.
  • 加载中
图(12) / 表(5)
计量
  • 文章访问数:  611
  • HTML全文浏览量:  355
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-22
  • 修回日期:  2023-06-16
  • 网络出版日期:  2023-06-28
  • 刊出日期:  2024-02-29

目录

    /

    返回文章
    返回