高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于视觉自注意力模型与轨迹滤波器的篮球战术识别

许国良 沈刚 梁旭鹏 雒江涛

许国良, 沈刚, 梁旭鹏, 雒江涛. 基于视觉自注意力模型与轨迹滤波器的篮球战术识别[J]. 电子与信息学报, 2024, 46(2): 615-623. doi: 10.11999/JEIT230079
引用本文: 许国良, 沈刚, 梁旭鹏, 雒江涛. 基于视觉自注意力模型与轨迹滤波器的篮球战术识别[J]. 电子与信息学报, 2024, 46(2): 615-623. doi: 10.11999/JEIT230079
XU Guoliang, SHEN Gang, LIANG Xupeng, LUO Jiangtao. Recognition of Basketball Tactics Based on Vision Transformer and Track Filter[J]. Journal of Electronics & Information Technology, 2024, 46(2): 615-623. doi: 10.11999/JEIT230079
Citation: XU Guoliang, SHEN Gang, LIANG Xupeng, LUO Jiangtao. Recognition of Basketball Tactics Based on Vision Transformer and Track Filter[J]. Journal of Electronics & Information Technology, 2024, 46(2): 615-623. doi: 10.11999/JEIT230079

基于视觉自注意力模型与轨迹滤波器的篮球战术识别

doi: 10.11999/JEIT230079
基金项目: 重庆市体育局科研重点项目(A2019002, A202113)
详细信息
    作者简介:

    许国良:男,教授,硕士生导师,研究方向为计算机视觉、大数据分析与挖掘等

    沈刚:男,硕士生,研究方向为计算机视觉、图像处理

    梁旭鹏:男,副教授,研究方向为智慧体育

    雒江涛:男,教授,研究方向为未来互联网体系架构、视频大数据分析等

    通讯作者:

    许国良 xugl@cqupt.edu.cn

  • 11) PlayersTrack 数据集:https://github.com/iceCream-sh/PlayersTrack.
  • 中图分类号: TP391; TN929

Recognition of Basketball Tactics Based on Vision Transformer and Track Filter

Funds: Chongqing Municipal Sports Bureau Research Key Projects (A2019002, A202113)
  • 摘要: 通过机器学习分析球员轨迹数据获得进攻或防守战术,是篮球视频内容理解的关键组成部分。传统机器学习方法需要人为设定特征变量,灵活性大大降低,因此如何自动获取可用于战术识别的特征信息成为关键问题。为此,该文基于美国职业篮球联赛(NBA)比赛中球员轨迹数据设计了一个篮球战术识别模型(TacViT),该模型以视觉自注意力模型(ViT)作为主干网络,利用多头注意力模块提取丰富的全局轨迹特征信息,同时并入轨迹滤波器来加强球场线与球员轨迹之间的特征信息交互,增强球员位置特征表示,其中轨迹滤波器以对数线性复杂度学习频域中的长期空间相关性。该文将运动视觉系统(SportVU)的序列数据转化为轨迹图,自建篮球战术数据集(PlayersTrack),在该数据集上的实验表明,TacViT的准确率达到了82.5%,相对未做更改的视觉自注意力S模型 (ViT-S),精度上提升了16.7%。
  • 图  1  TacViT网络架构图

    图  2  轨迹图像滤波过程

    图  3  多头注意力机制

    图  4  “牛角”战术示意图

    图  5  “边线球”战术示意图

    图  6  “边线球”战术类别的图像处理过程

    图  7  TFMHA模块不同组合

    图  8  3种heads下TFMHA模块的组合

    表  1  混淆矩阵正确率

    “牛角”“挡拆”“二三联防”“边线球”
    “牛角”0.860.0800.06
    “挡拆”0.120.760.060.04
    “二三联防”00.100.900
    “边线球”0.040.100.110.75
    下载: 导出CSV

    表  2  与当前的主流网络对比

    模型Params(M)FLOPS(G)Acc.(%)
    ResNet50[12]25.64.167.9
    ResNet101[12]44.57.970.6
    ViT-S[14]21.74.275.8
    ViT-B[14]85.816.877.4
    GFNet-S[22]24.54.4677.6
    SwinT-T[23]29.14.579.3
    SwinT-S[23]50.28.780.1
    Deit-S[24]21.74.279.1
    Deit-B[24]85.617.580.7
    ResMLP-S/24[25]29.65.9772.2
    CrossViT-S[20]26.35.0878.5
    TacViT35.76.682.5
    下载: 导出CSV
  • [1] PERŠE M, KRISTAN M, KOVAČIČ S, et al. A trajectory-based analysis of coordinated team activity in a basketball game[J]. Computer Vision and Image Understanding, 2009, 113(5): 612–621. doi: 10.1016/j.cviu.2008.03.001.
    [2] YUE Qiang and WEI Chao. Innovation of human body positioning system and basketball training system[J]. Computational Intelligence and Neuroscience, 2022, 2022: 2369925. doi: 10.1155/2022/2369925.
    [3] MILLER A C and BORNN L. Possession sketches: Mapping NBA strategies[C]. The 2017 MIT Sloan Sports Analytics Conference, Boston, USA, 2017.
    [4] TIAN Changjia, DE SILVA V, CAINE M, et al. Use of machine learning to automate the identification of basketball strategies using whole team player tracking data[J]. Applied Sciences, 2019, 10(1): 24. doi: 10.3390/app10010024.
    [5] MCINTYRE A, BROOKS J, GUTTAG J, et al. Recognizing and analyzing ball screen defense in the NBA[C]. The MIT Sloan Sports Analytics Conference, Boston, USA, 2016: 11–12.
    [6] WANG K C and ZEMEL R. Classifying NBA offensive plays using neural networks[C]. MIT Sloan Sports Analytics Conference, Boston, USA, 2016.
    [7] CHEN H T, CHOU C L, FU T S, et al. Recognizing tactic patterns in broadcast basketball video using player trajectory[J]. Journal of Visual Communication and Image Representation, 2012, 23(6): 932–947. doi: 10.1016/j.jvcir.2012.06.003.
    [8] TSAI T Y, LIN Y Y, LIAO H Y M, et al. Recognizing offensive tactics in broadcast basketball videos via key player detection[C]. 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 2017: 880–884.
    [9] TSAI T Y, LIN Y Y, JENG S K, et al. End-to-end key-player-based group activity recognition network applied to basketball offensive tactic identification in limited data scenarios[J]. IEEE Access, 2021, 9: 104395–104404. doi: 10.1109/ACCESS.2021.3098840.
    [10] CHEN C H, LIU T L, WANG Y S, et al. Spatio-temporal learning of basketball offensive strategies[C]. The 23rd ACM international conference on Multimedia, Brisbane, Australia, 2015: 1123–1126.
    [11] BORHANI Y, KHORAMDEL J, and NAJAFI E. A deep learning based approach for automated plant disease classification using vision transformer[J]. Scientific Reports, 2022, 12(1): 11554. doi: 10.1038/s41598-022-15163-0.
    [12] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. The 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778.
    [13] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]. The 31st International Conference onAdvances in Neural Information Processing Systems, Long Beach, USA, 2017: 6000–6010.
    [14] LI Shaohua, XUE Kaiping, ZHU Bin, et al. FALCON: A Fourier transform based approach for fast and secure convolutional neural network predictions[C]. The 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 8702–8711.
    [15] DING Caiwen, LIAO Siyu, WANG Yanzhi, et al. CirCNN: Accelerating and compressing deep neural networks using block-circulant weight matrices[C]. The 50th Annual IEEE/ACM International Symposium on Microarchitecture, Cambridge, USA, 2017: 395–408.
    [16] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[C]. The 9th International Conference on Learning Representations, Vienna, Austria, 2021.
    [17] WU Kan, PENG Houwen, CHEN Minghao, et al. Rethinking and improving relative position encoding for vision transformer[C]. Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 10013–10021.
    [18] HSIEH H Y, CHEN C Y, WANG Y S, et al. BasketballGAN: Generating basketball play simulation through sketching[C]. The 27th ACM International Conference on Multimedia, Chengdu, China, 2019: 720–728.
    [19] HAN Kai, XIAO An, WU Enhua, et al. Transformer in transformer[C]. Advances in Neural Information Processing Systems, 2021: 15908–15919.
    [20] CHEN C F R, FAN Quanfu, and PANDA R. CrossViT: Cross-attention multi-scale vision transformer for image classification[C]. The 2021 IEEE/CVF International Conference on Computer Vision. Montreal, Canada, 2021: 347–356.
    [21] STSTS. PERFORMANCE ANAL YSIS POWERED BYAI[OL]. https://www.statsperform.com/team-performance. 2022.7.
    [22] RAO Yongming, ZHAO Wenliang, ZHU Zheng, et al. Global filter networks for image classification[C]. Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021, 2021: 980–993.
    [23] LIU Ze, LIN Yutong, CAO Yue, et al. Swin transformer: Hierarchical vision transformer using shifted windows[C]. The 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 9992–10002.
    [24] TOUVRON H, CORD M, DOUZE M, et al. Training data-efficient image transformers & distillation through attention[C]. The 38th International Conference on Machine Learning, Vienna, Austria, 2021: 10347–10357.
    [25] TOUVRON H, BOJANOWSKI P, CARON M, et al. ResMLP: Feedforward networks for image classification with data-efficient training[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(4): 5314–5321. doi: 10.1109/TPAMI.2022.3206148.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  657
  • HTML全文浏览量:  379
  • PDF下载量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-21
  • 修回日期:  2023-05-09
  • 网络出版日期:  2023-05-17
  • 刊出日期:  2024-02-29

目录

    /

    返回文章
    返回