高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用自适应光照初始化的弱光图像增强方法

刘波 田广粮 肖斌 马建峰 毕秀丽

刘波, 田广粮, 肖斌, 马建峰, 毕秀丽. 利用自适应光照初始化的弱光图像增强方法[J]. 电子与信息学报, 2024, 46(2): 643-651. doi: 10.11999/JEIT230056
引用本文: 刘波, 田广粮, 肖斌, 马建峰, 毕秀丽. 利用自适应光照初始化的弱光图像增强方法[J]. 电子与信息学报, 2024, 46(2): 643-651. doi: 10.11999/JEIT230056
LIU Bo, TIAN Guangliang, XIAO Bin, MA Jianfeng, BI Xiuli. Low Light Image Enhancement With Adaptive Light Initialization[J]. Journal of Electronics & Information Technology, 2024, 46(2): 643-651. doi: 10.11999/JEIT230056
Citation: LIU Bo, TIAN Guangliang, XIAO Bin, MA Jianfeng, BI Xiuli. Low Light Image Enhancement With Adaptive Light Initialization[J]. Journal of Electronics & Information Technology, 2024, 46(2): 643-651. doi: 10.11999/JEIT230056

利用自适应光照初始化的弱光图像增强方法

doi: 10.11999/JEIT230056
基金项目: 重庆自然科学基金杰出青年科学基金(CSTB2022NSCQ-JQX0001),国家自然科学基金(62172067, 61976031),重庆市教委科学技术研究项目(KJQN202200635)
详细信息
    作者简介:

    刘波:男,博士,讲师,研究方向为多媒体安全和图像处理

    田广粮:男,硕士,研究方向为图像增强

    肖斌:男,博士,教授,博士生导师,研究方向为图像增强与复原

    马建峰:男,博士,教授,博士生导师,研究方向为密码学、无线和移动安全

    毕秀丽:女,博士,教授,博士生导师,研究方向为图像处理、多媒体安全

    通讯作者:

    毕秀丽 bixl@cqupt.edu.cn

  • 中图分类号: TP309.7; TN911.73

Low Light Image Enhancement With Adaptive Light Initialization

Funds: The Natural Science Foundation of Chongqing for Distinguished Young Scholars (CSTB2022NSCQ-JQX0001), The National Natural Science Foundation of China (62172067, 61976031), Science and Technology Research Project of Chongqing Municipal Education Commission (KJQN202200635)
  • 摘要: 由于光照分量分解估计的高度不确定性,如何准确估计图像的光照分量一直是基于Retinex模型的图像增强方法需要解决的难题。该文提出一个简单有效的方法,准确估计图像的初始光照分量,进而实现弱光图像增强。具体地,首先根据输入图像得到其对应的光照权重矩阵,以指导光照分量的自适应初始化估计;随后在光照结构约束下,对初始光照分量优化估计,并进一步执行非线性光照调整;最终结合Retinex模型得到增强结果。实验表明,该方法不仅能够实现准确的图像分解估计,而且与现有的弱光图像增强方法相比,该文所提方法在多个数据集上的主观视觉效果和客观评价指标都有更好的表现,同时也保持着良好的运行效率。
  • 图  1  Retinex模型示例

    图  2  基于自适应光照初始化的弱光图像增强方法流程

    图  3  光照权重矩阵${{\boldsymbol{W}}_{\text{I}}}$的影响

    图  4  不同光照初始化估计方法结构纹理的感知

    图  5  常数值$ {\text{£}} $的取值

    图  6  局部块尺寸大小的选择

    图  7  不同数据集中DE的平均值

    图  8  不同数据集中NIQE的平均值

    图  9  不同基于Retinex方法的图像分解对比

    图  10  不同基于Retinex方法的图像分解对比

    图  11  不同弱光图像增强方法的主观效果

    图  12  Zero-DCE方法的局限

    表  1  不同方法在各数据集上DE↑的平均值

    数据集CLAHEGCDehazeSRIEJIEPSTARZero-DCE本文方法
    DICM7.028 26.514 67.068 47.028 97.069 86.988 77.029 27.218 8
    NASA6.952 06.580 26.907 27.101 27.072 86.935 96.629 87.186 9
    LIME7.050 06.769 77.074 76.854 86.902 86.783 47.017 47.533 8
    VV7.277 47.017 67.344 67.348 27.361 87.272 47.433 27.605 1
    LOL6.713 26.465 26.836 46.840 76.799 06.683 97.051 87.118 7
    下载: 导出CSV

    表  2  不同方法在各数据集上NIQE↓的平均值

    数据集CLAHEGCDehazeSRIEJIEPSTARZero-DCE本文方法
    DICM3.970 34.061 44.210 34.214 64.049 54.339 53.724 73.851 5
    NASA3.306 83.947 13.381 93.511 93.374 53.701 14.289 23.234 1
    LIME4.018 94.110 24.140 73.885 93.946 34.015 13.762 03.813 8
    VV2.851 42.737 13.076 32.725 82.646 32.822 33.084 42.471 4
    LOL3.670 23.441 03.536 13.400 23.342 93.471 53.294 03.114 8
    下载: 导出CSV

    表  3  不同方法增强图像的运行时间平均值(s)

    方法CLAHEGCDehazeSRIE
    时间0.170.221.5715.26
    方法JIEPSTARZero-DCE本文方法
    时间20.4323.522.818.96
    下载: 导出CSV
  • [1] BI Xiuli, HU Jinwu, XIAO Bin, et al. IEMask R-CNN: Information-enhanced Mask R-CNN[J]. IEEE Transactions on Big Data, 2023, 9(2): 688–700. doi: 10.1109/TBDATA.2022.3187413.
    [2] LAND E H. The retinex theory of color vision[J]. Scientific American, 1977, 237(6): 108–129. doi: 10.1038/scientificamerican1277-108.
    [3] LAND E H and MCCANN J J. Lightness and retinex theory[J]. Journal of the Optical Society of America, 1971, 61(1): 1–11. doi: 10.1364/JOSA.61.000001.
    [4] SMITHA A, FEBIN I P, and JIDESH P. A retinex based non-local total generalized variation framework for OCT image restoration[J]. Biomedical Signal Processing and Control, 2022, 71: 103234. doi: 10.1016/j.bspc.2021.103234.
    [5] LIU Risheng, MA Long, ZHANG Jiaao, et al. Retinex-inspired unrolling with cooperative prior architecture search for low-light image enhancement[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 10556–10565.
    [6] JOBSON D J, RAHMAN Z, and WOODELL G A. Properties and performance of a center/surround retinex[J]. IEEE Transactions on Image Processing, 1997, 6(3): 451–462. doi: 10.1109/83.557356.
    [7] JOBSON D J, RAHMAN Z, and WOODELL G A. A multiscale retinex for bridging the gap between color images and the human observation of scenes[J]. IEEE Transactions on Image Processing, 1997, 6(7): 965–976. doi: 10.1109/83.597272.
    [8] KIMMEL R, ELAD M, SHAKED D, et al. A variational framework for retinex[J]. International Journal of Computer Vision, 2003, 52(1): 7–23. doi: 10.1023/A:1022314423998.
    [9] FU Xueyang, ZENG Delu, HUANG Yue, et al. A weighted variational model for simultaneous reflectance and illumination estimation[C]. The 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 2782–2790.
    [10] XU Jun, HOU Yingkun, REN Dongwei, et al. STAR: A structure and texture aware retinex model[J]. IEEE Transactions on Image Processing, 2020, 29: 5022–5037. doi: 10.1109/TIP.2020.2974060.
    [11] CAI Bolun, XU Xianming, GUO Kailing, et al. A joint intrinsic-extrinsic prior model for retinex[C]. The 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 4020–4029.
    [12] GUO Xiaojie, LI Yu, and LING Haibin. LIME: Low-light image enhancement via illumination map estimation[J]. IEEE Transactions on Image Processing, 2017, 26(2): 982–993. doi: 10.1109/TIP.2016.2639450.
    [13] LI Mading, LIU Jiaying, YANG Wenhan, et al. Structure-revealing low-light image enhancement via robust retinex model[J]. IEEE Transactions on Image Processing, 2018, 27(6): 2828–2841. doi: 10.1109/TIP.2018.2810539.
    [14] CAO Gang, HUANG Lihui, TIAN Huawei, et al. Contrast enhancement of brightness-distorted images by improved adaptive gamma correction[J]. Computers & Electrical Engineering, 2018, 66: 569–582. doi: 10.1016/j.compeleceng.2017.09.012.
    [15] WANG Ruixing, ZHANG Qing, FU C W, et al. Underexposed photo enhancement using deep illumination estimation[C]. The 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 6842–6850.
    [16] REN Xutong, YANG Wenhan, CHENG Wenhuang, et al. LR3M: Robust low-light enhancement via low-rank regularized retinex model[J]. IEEE Transactions on Image Processing, 2020, 29: 5862–5876. doi: 10.1109/TIP.2020.2984098.
    [17] NASA. Retinex image processing[EB/OL]. https://dragon.larc.nasa.gov/retinex/pao/news, 2001.
    [18] VONIKAKIS V, ANDREADIS I, and GASTERATOS A. Fast centre–surround contrast modification[J]. IET Image Processing, 2008, 2(1): 19–34. doi: 10.1049/iet-ipr:20070012.
    [19] LEE C, LEE C, and KIM C S. Contrast enhancement based on layered difference representation of 2D histograms[J]. IEEE Transactions on Image Processing, 2013, 22(12): 5372–5384. doi: 10.1109/TIP.2013.2284059.
    [20] WEI Chen, WANG Wenjing, YANG Wenhan, et al. Deep retinex decomposition for low-light enhancement[C]. British Machine Vision Conference 2018, Newcastle, UK, 2018: 155.
    [21] YE Zhengmao, MOHAMADIAN H, and YE Yongmao. Discrete entropy and relative entropy study on nonlinear clustering of underwater and arial images[C]. 2007 IEEE International Conference on Control Applications, Singapore, 2007: 313–318.
    [22] HAUTIÈRE N, TAREL J P, AUBERT D, et al. Blind contrast enhancement assessment by gradient ratioing at visible edges[J]. Image Analysis and Stereology, 2008, 27(2): 87–95. doi: 10.5566/ias.v27.p87-95.
    [23] REZA A M. Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement[J]. Journal of VLSI Signal Processing Systems for Signal, Image and Video Technology, 2004, 38(1): 35–44. doi: 10.1023/B:VLSI.0000028532.53893.82.
    [24] RAHMAN S, RAHMAN M, ABDULLAH-AL-WADUD M, et al. An adaptive gamma correction for image enhancement[J]. EURASIP Journal on Image and Video Processing, 2016, 2016(1): 35. doi: 10.1186/s13640-016-0138-1.
    [25] DONG Xuan, WANG Guan, PANG Yi, et al. Fast efficient algorithm for enhancement of low lighting video[C]. 2011 IEEE International Conference on Multimedia and Expo, Barcelona, 2011: 1–6.
    [26] LI Chongyi, GUO Chunle, and LOY C C. Learning to enhance low-light image via zero-reference deep curve estimation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(8): 4225–4238. doi: 10.1109/TPAMI.2021.3063604.
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  409
  • HTML全文浏览量:  342
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-15
  • 修回日期:  2023-08-17
  • 网络出版日期:  2023-08-24
  • 刊出日期:  2024-02-29

目录

    /

    返回文章
    返回