高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于边缘算力协同系统的视频智能分析任务动态调度方法

李成华 石胜涛 李孝天 江小平 石鸿凌

李成华, 石胜涛, 李孝天, 江小平, 石鸿凌. 基于边缘算力协同系统的视频智能分析任务动态调度方法[J]. 电子与信息学报, 2023, 45(12): 4458-4468. doi: 10.11999/JEIT221570
引用本文: 李成华, 石胜涛, 李孝天, 江小平, 石鸿凌. 基于边缘算力协同系统的视频智能分析任务动态调度方法[J]. 电子与信息学报, 2023, 45(12): 4458-4468. doi: 10.11999/JEIT221570
LI Chenghua, SHI Shengtao, LI Xiaotian, JIANG Xiaoping, SHI Hongling. Dynamic Scheduling Method for Video Intelligent Analysis Tasks Based on Edge Computing Power Collaborative System[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4458-4468. doi: 10.11999/JEIT221570
Citation: LI Chenghua, SHI Shengtao, LI Xiaotian, JIANG Xiaoping, SHI Hongling. Dynamic Scheduling Method for Video Intelligent Analysis Tasks Based on Edge Computing Power Collaborative System[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4458-4468. doi: 10.11999/JEIT221570

基于边缘算力协同系统的视频智能分析任务动态调度方法

doi: 10.11999/JEIT221570
基金项目: 国家重点研发计划 (2020YFC1522600);中央高校攻关计划专项资金 (CZT20001)
详细信息
    作者简介:

    李成华:男,副教授,研究方向为计算机应用

    石胜涛:女,硕士生,研究方向为大数据

    李孝天:男,硕士生,研究方向为大数据

    江小平:男,教授,研究方向为信息与信号处理

    石鸿凌:男,讲师,研究方向为物联网技术

    通讯作者:

    江小平 jiangxp@mail.scuec.edu.cn

  • 中图分类号: TN92

Dynamic Scheduling Method for Video Intelligent Analysis Tasks Based on Edge Computing Power Collaborative System

Funds: The National Key R&D Program of China (2020YFC1522600), The South-Central University for Nationalities (CZT20001)
  • 摘要: 对监控视频数据进行基于深度学习模型的智能分析可提升文物博物馆单位的文物安全风险防范能力。针对文物博物馆单位希望充分利用现有空闲可用计算资源完成更多视频数据智能分析的需求,该文提出一种视频智能分析任务动态调度方法,将边缘侧文物博物馆单位内拥有空闲可用计算资源的设备作为计算节点组建边缘算力协同系统进行视频智能分析任务的处理。该文把要解决的问题建模为2维多重背包问题,并采用动态规划的方法,求解如何在边缘算力协同系统上动态分配视频分析任务使得每一个时间周期内系统执行任务获得的安全价值效益最大化的问题。仿真实验结果表明,所提方法能在不干扰文物博物馆单位正常业务应用服务的情况下,根据对系统当前资源使用状态监控与分析,动态分配视频智能分析任务,达到了最大化安全价值效益的目的。
  • 图  1  边缘算力协同系统构成

    图  2  任务动态调度流程

    图  3  边缘算力协同系统的技术架构图

    图  4  未进行任务调度前计算节点办公业务资源消耗情况

    图  5  单计算节点动态规划和贪心算法CPU消耗对比

    图  6  单计算节点动态规划和贪心算法内存消耗对比

    图  7  单计算节点动态规划和贪心算法价值效益对比

    图  8  未进行任务调度前f1f2上办公业务资源消耗情况

    图  9  多计算节点动态规划和贪心算法CPU消耗对比

    10  多计算节点动态规划和贪心算法内存消耗对比

    图  11  多计算节点动态规划和贪心算法价值效益对比

    算法1 任务调度算法
     1. each $ {t}_{\tau }:C={C}_{{f}_{i}}^{\text{a}}({t}_{\tau })={\lambda }_{c}{C}_{{f}_{i}}-{C}_{{f}_{i}}^{\text{b}}({t}_{\tau }) $,
      $M = M_{{f_i}}^{\text{a}}({t_\tau }) = {\lambda _m}{M_{{f_i}}} - M_{{f_i}}^{\text{b}}({t_\tau })$, $ {\text{TN = SUM(}}T{\text{)}} $
     2. for($j$ = 1 to TN) do
     3. for(${c_1}$ = C to $ C[j] $) do
     4.  for(${m_{\text{1}}}$ = M to $M[j]$) do
     5.   if (${c_{\text{1} } } \ge C[j]\& \& {m_1} \ge M[j]$)
     6.   then ${\text{dp[} }{c_1}{\text{][} }{m_1}{\text{] = max[dp[} }{c_1}{\text{][} }{m_1}]$,
        ${\rm{dp}}[ {c_1}{{ - {\rm{C}}[} }j{\text{]][} }{m_1}{-\text{M[} }j{\text{]] + } }{V_{ {T_j} } }{\text{] } } $
     7.   end if
     8.  end for
     9. end for
     10. end for
     11. $ {{\boldsymbol I}_{{{f}_{i}}}} = {\text{findResult(TN,}}C{\text{,}}M{\text{)}} $
     12. ${\text{max}}{V_{{t_\tau }}}{\text{ = dp[}}C{\text{][}}M{\text{]}}$
     13. return ${{\boldsymbol I}_{{{f}_{i}}}}$ and $\max {V_{{t_\tau }{f_i}}}{\text{ = dp[}}C{\text{][}}M{\text{]}}$
    下载: 导出CSV

    表  1  实验所调度的job定义

    类别(任务编号)
    第1类(model-05)第2类(model-15)第3类(model-20)第4类(model-30)第5类(model-40)
    模型应用功能人脸识别消防通道拥堵徘徊行为识别攀爬行为识别挖掘行为识别
    所需CPU资源(m)6001800240036004800
    所需内存资源(Mi)8002000250040005200
    安全价值效益2090100120150
    最大任务个数23221
    下载: 导出CSV
  • [1] DENG Ruilong, LU Rongxing, LAI Chengzhe, et al. Optimal workload allocation in fog-cloud computing toward balanced delay and power consumption[J]. IEEE Internet of Things Journal, 2016, 3(6): 1171–1181. doi: 10.1109/JIOT.2016.2565516
    [2] FAN Qiang and ANSARI N. Towards workload balancing in fog computing empowered IoT[J]. IEEE Transactions on Network Science and Engineering, 2020, 7(1): 253–262. doi: 10.1109/TNSE.2018.2852762
    [3] YOUSEFPOUR A, ISHIGAKI G, GOUR R, et al. On reducing IoT service delay via fog offloading[J]. IEEE Internet of Things Journal, 2018, 5(2): 998–1010. doi: 10.1109/JIOT.2017.2788802
    [4] KIM W S and CHUNG S H. User-participatory fog computing architecture and its management schemes for improving feasibility[J]. IEEE Access, 2018, 6: 20262–20278. doi: 10.1109/ACCESS.2018.2815629
    [5] AL-KHAFAJIY M, BAKER T, AL-LIBAWY H, et al. Fog computing framework for internet of things applications[C]. The 11th International Conference on Developments in eSystems Engineering, Cambridge, UK, 2018: 71–77.
    [6] BONOMI F, MILITO R, ZHU Jiang, et al. Fog computing and its role in the internet of things[C]. The First Edition of the MCC Workshop on Mobile Cloud Computing, Helsinki, Finland, 2012: 13–16.
    [7] 许方敏, 伍丽娇, 王翔, 等. 5G上行链路中基于预测的紧急资源分配方法研究[J]. 电子与信息学报, 2022, 44(2): 611–619. doi: 10.11999/JEIT201050

    XU Fangmin, WU Lijiao, WANG Xiang, et al. Research on prediction based emergency resource allocation in 5G uplink[J]. Journal of Electronics &Information Technology, 2022, 44(2): 611–619. doi: 10.11999/JEIT201050
    [8] KATTEPUR A, DOHARE H, MUSHUNURI V, et al. Resource constrained offloading in fog computing[C]. The 1st Workshop on Middleware for Edge Clouds & Cloudlets, Trento, Italy, 2016: 1–6.
    [9] MENNES R, SPINNEWYN B, LATRÉ S, et al. GRECO: A distributed genetic algorithm for reliable application placement in hybrid clouds[C]. The 5th IEEE International Conference on Cloud Networking, Pisa, Italy, 2016: 14–20.
    [10] SKARLAT O, NARDELLI M, SCHULTE S, et al. Towards QoS-aware fog service placement[C]. The 1st International Conference on Fog and Edge Computing, Madrid, Spain, 2017: 89–96.
    [11] BROGI A and FORTI S. QoS-aware deployment of IoT applications through the fog[J]. IEEE Internet of Things Journal, 2017, 4(5): 1185–1192. doi: 10.1109/JIOT.2017.2701408
    [12] 卢为党, 詹悦者, 花俏枝, 等. 基于无人机无线能量传输的边缘计算系统能耗优化方法研究[J]. 电子与信息学报, 2022, 44(3): 899–905. doi: 10.11999/JEIT211314

    LU Weidang, ZHAN Yuezhe, HUA Qiaozhi, et al. Energy consumption optimization in UAV wireless power transfer based mobile edge computing system[J]. Journal of Electronics &Information Technology, 2022, 44(3): 899–905. doi: 10.11999/JEIT211314
    [13] MENG Jiaying, TAN Haisheng, LI Xiangyang, et al. Online deadline-aware task dispatching and scheduling in edge computing[J]. IEEE Transactions on Parallel and Distributed Systems, 2020, 31(6): 1270–1286. doi: 10.1109/TPDS.2019.2961905
    [14] LIU Shengyu, QI Xiaogang, and LIU Lifang. Multi-objective task scheduling of circuit repair[J]. Axioms, 2022, 11(12): 714. doi: 10.3390/axioms11120714
    [15] 张翀宇, 陈彦明, 李炜. 边缘计算中面向数据流的实时任务调度算法[J]. 计算机科学, 2022, 49(7): 263–270. doi: 10.11896/jsjkx.210300195

    ZHANG Chongyu, CHEN Yanming, and LI Wei. Task offloading online algorithm for data stream edge computing[J]. Computer Science, 2022, 49(7): 263–270. doi: 10.11896/jsjkx.210300195
    [16] CHEBIL K and KHEMAKHEM M. A dynamic programming algorithm for the knapsack problem with setup[J]. Computers & Operations Research, 2015, 64: 40–50. doi: 10.1016/j.cor.2015.05.005
    [17] HE Yichao, WANG Xizhao, and HE Yulin, et al. Exact and approximate algorithms for discounted {0-1} knapsack problem[J]. Information Sciences, 2016, 369: 634–647. doi: 10.1016/j.ins.2016.07.037
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  455
  • HTML全文浏览量:  182
  • PDF下载量:  113
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-23
  • 修回日期:  2023-07-24
  • 录用日期:  2023-07-31
  • 网络出版日期:  2023-08-07
  • 刊出日期:  2023-12-26

目录

    /

    返回文章
    返回