高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于对偶误差的脉冲神经网络目标检测方法

刘伟 李文娟 高晋 李椋

刘伟, 李文娟, 高晋, 李椋. 基于对偶误差的脉冲神经网络目标检测方法[J]. 电子与信息学报, 2023, 45(12): 4469-4476. doi: 10.11999/JEIT221549
引用本文: 刘伟, 李文娟, 高晋, 李椋. 基于对偶误差的脉冲神经网络目标检测方法[J]. 电子与信息学报, 2023, 45(12): 4469-4476. doi: 10.11999/JEIT221549
LIU Wei, LI Wenjuan, GAO Jin, LI Liang. Spiking Neural Network for Object Detection Based on Dual Error[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4469-4476. doi: 10.11999/JEIT221549
Citation: LIU Wei, LI Wenjuan, GAO Jin, LI Liang. Spiking Neural Network for Object Detection Based on Dual Error[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4469-4476. doi: 10.11999/JEIT221549

基于对偶误差的脉冲神经网络目标检测方法

doi: 10.11999/JEIT221549
基金项目: 国家重点研发计划(2020AAA0105802, 2020AAA0105800),国家自然科学基金(62202469),北京市自然科学基金(4224091)
详细信息
    作者简介:

    刘伟:男,助理研究员,研究方向为计算机视觉及其应用

    李文娟:女,副研究员,研究方向为图像处理与模式识别

    高晋:男,副研究员,研究方向为视觉智能感知及其在无人系统中的应用

    李椋:男,助理研究员,研究方向为类脑视觉感知

    通讯作者:

    刘伟 liuwei@ia.ac.cn

  • 中图分类号: TP183

Spiking Neural Network for Object Detection Based on Dual Error

Funds: The National Key Research and Development Program of China (2020AAA0105802, 2020AAA0105800), The National Natural Science Foundation of China (62202469), Beijing Natural Science Foundation (4224091)
  • 摘要: 脉冲神经网络(SNN)是一种模拟大脑神经元动力学的低功耗神经网络,为高计算效率、低能源消耗环境部署目标检测任务提供了可行的解决方案。由于脉冲的不可微性质导致SNN训练困难,一种有效的解决方法是将预训练的人工神经网络(ANN)转换为SNN来提高推理能力。然而,转换后的SNN 经常遇到性能下降和高延迟的问题,无法满足目标检测任务对高精度定位的要求。该文针对ANN转SNN过程中产生的误差问题,引入对偶误差模型降低转换性能损失。首先,该文分析误差产生原因,构建对偶误差模型来模拟ANN到SNN转换误差。进一步地,将对偶误差模型引入到ANN训练过程,使转换前后的模型在训练和推理过程中误差保持一致,从而降低模型的转换性能损失。最后,利用轻量化检测算法YOLO在数据集PASCAL VOC和 MS COCO上验证了对偶误差模型的有效性。
  • 图  1  网络结构模型

    图  2  对偶误差模型

    图  3  目标检测结果

    图  4  对偶误差模型推理结果

    表  1  MS COCO和PASCAL VOC数据集上mAP实验结果(%)

    模型ANNSNN
    COCOVOCCOCOVOC
    Tiny YOLO26.2453.01
    Spiking YOLO(T =5000)26.2453.0125.6651.83
    本文方法(T =300)38.7054.5030.8151.70
    下载: 导出CSV

    表  2  不同时间步长在两个数据集上mAP的结果(%)

    TCOCOVOC
    30030.8151.70
    20025.6049.30
    1000.1331.20
    500.000.06
    下载: 导出CSV

    表  3  对偶误差消融实验mAP(%)

    模型 COCOVOC
    w\o DE-SNN(T=300)28.8650.23
    w\o DE-SNN(T=200)23.1648.63
    DE-SNN(T=300)30.8151.70
    DE-SNN(T=200)25.6049.30
    下载: 导出CSV
  • [1] DING Xiaohan, ZHANG Xiangyu, MA Ningning, et al. RepVGG: Making VGG-style ConvNets great again[C]. The 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 13728–13737.
    [2] GUO Yiwen, YAO Anbang, and CHEN Yurong. Dynamic network surgery for efficient DNNs[C]. The 30th International Conference on Neural Information Processing Systems, Barcelona, Spain, 2016.
    [3] GOU Jianping, YU Baosheng, MAYBANK S J, et al. Knowledge distillation: A survey[J]. International Journal of Computer Vision, 2021, 129(6): 1789–1819. doi: 10.1007/s11263-021-01453-z
    [4] WANG Lin and YOON K J. Knowledge distillation and student-teacher learning for visual intelligence: A review and new outlooks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 44(6): 3048–3068. doi: 10.1109/TPAMI.2021.3055564
    [5] 曲志昱, 李根, 邓志安. 基于知识蒸馏与注意力图的雷达信号识别方法[J]. 电子与信息学报, 2022, 44(9): 3170–3177. doi: 10.11999/JEIT210695

    QU Zhiyu, LI Gen, DENG Zhian. Radar signal recognition method based on knowledge distillation and attention map[J]. Journal of Electronics &Information Technology, 2022, 44(9): 3170–3177. doi: 10.11999/JEIT210695
    [6] GONG Yanchao, YANG Kaifang, LIU Ying, et al. Quantization parameter cascading for surveillance video coding considering all inter reference frames[J]. IEEE Transactions on Image Processing, 2021, 30: 5692–5707. doi: 10.1109/TIP.2021.3087413
    [7] JI Mengyu, PENG Gaoliang, LI Sijue, et al. A neural network compression method based on knowledge-distillation and parameter quantization for the bearing fault diagnosis[J]. Applied Soft Computing, 2022, 127: 109331. doi: 10.1016/j.asoc.2022.109331
    [8] AKOPYAN F, SAWADA J, CASSIDY A, et al. TrueNorth: Design and tool flow of a 65 mW 1 million neuron programmable neurosynaptic chip[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2015, 34(10): 1537–1557. doi: 10.1109/TCAD.2015.2474396
    [9] MA Songchen, PEI Jing, ZHANG Weihao, et al. Neuromorphic computing chip with spatiotemporal elasticity for multi-intelligent-tasking robots[J]. Science Robotics, 2022, 7(67): eabk2948. doi: 10.1126/scirobotics.abk2948
    [10] MA De, SHEN Juncheng, GU Zonghua, et al. Darwin: A neuromorphic hardware co-processor based on spiking neural networks[J]. Science China Information Sciences, 2017, 77: 43–51. doi: 10.1016/j.sysarc.2017.01.003
    [11] BU Tong, FANG Wei, DING Jianhao, et al. Optimal ANN-SNN conversion for high-accuracy and ultra-low-latency spiking neural networks[C]. The Tenth International Conference on Learning Representations, Addis Ababa, Ethiopia, 2022.
    [12] CAO Yongqiang, CHEN Yang, and KHOSLA D. Spiking deep convolutional neural networks for energy-efficient object recognition[J]. International Journal of Computer Vision, 2015, 113(1): 54–66. doi: 10.1007/s11263-014-0788-3
    [13] SUN Wei, DAI Liang, ZHANG Xiaorui, et al. RSOD: Real-time small object detection algorithm in UAV-based traffic monitoring[J]. Applied Intelligence, 2022, 52(8): 8448–8463. doi: 10.1007/s10489-021-02893-3
    [14] WU Peirong, LIU Airong, FU Jiyang, et al. Autonomous surface crack identification of concrete structures based on an improved one-stage object detection algorithm[J]. Engineering Structures, 2022, 272: 114962. doi: 10.1016/j.engstruct.2022.114962
    [15] KIM S, PARK S, NA B, et al. Spiking-YOLO: Spiking neural network for energy-efficient object detection[C]. The Thirty-Fourth AAAI Conference on Artificial Intelligence, New York, USA, 2020: 11270–11277.
    [16] SENGUPTA A, YE Yuting, WANG R, et al. Going deeper in spiking neural networks: VGG and residual architectures[J]. Frontiers in Neuroscience, 2019, 13: 95. doi: 10.3389/fnins.2019.00095
    [17] ZHANG Tielin, ZENG Yi, ZHAO Dongcheng, et al. A plasticity-centric approach to train the non-differential spiking neural networks[C]. The Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, USA, 2018: 77.
    [18] 杨静, 吉晓阳, 李少波, 等. 具有正则化约束的脉冲神经网络机器人触觉物体识别方法[J]. 电子与信息学报, 2023, 45(7): 2595–2604.

    YANG Jing, JI Xiaoyang, LI Shaobo, et al. Spiking neural network robot tactile object recognition method with regularization constraints[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2595–2604.
    [19] MASQUELIER T and THORPE S J. Learning to recognize objects using waves of spikes and spike timing-dependent plasticity[C]. The 2010 International Joint Conference on Neural Networks, Barcelona, Spain, 2010: 1–8.
    [20] BOHTE S M, KOK J N, and LA POUTRÉ J A. SpikeProp: Backpropagation for networks of spiking neurons[C]. The 30th European Symposium on Artificial Neural Networks, Bruges, Belgium, 2000: 419–424.
    [21] HEBB D O. The effect of early and late brain injury upon test scores, and the nature of normal adult intelligence[J]. Proceedings of the American Philosophical Society, 1942, 85(3): 275–292.
    [22] CAPORALE N and DAN Yang. Spike timing-dependent plasticity: A Hebbian learning rule[J]. Annual Review of Neuroscience, 2008, 31: 25–46. doi: 10.1146/annurev.neuro.31.060407.125639
    [23] GERSTNER W. A Framework for Spiking Neuron Models: The Spike Response Model[M]. Handbook of Biological Physics, 2001, 4: 469–516.
    [24] GHAHARI A and ENDERLE J D. A neuron-based time-optimal controller of horizontal saccadic eye movements[J]. International Journal of Neural Systems, 2014, 24(6): 1450017. doi: 10.1142/S0129065714500178
    [25] DIEHL P U, NEIL D, BINAS J, et al. Fast-classifying, high-accuracy spiking deep networks through weight and threshold balancing[C]. 2015 International Joint Conference on Neural Networks, Killarney, Ireland, 2015: 1–8.
    [26] FANG Wei, YU Zhaofei, CHEN Yanqi, et al. Deep residual learning in spiking neural networks[C/OL]. The 35th International Conference on Neural Information Processing Systems, 2021: 21056–21069.
    [27] HAN Bing and ROY K. Deep spiking neural network: Energy efficiency through time based coding[C]. The 16th European Conference on Computer Vision, Glasgow, UK, 2020: 388–404.
    [28] HU Yangfan, TANG Huajin, and PAN Gang. Spiking deep residual networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(8): 5200–5205.
    [29] BU Tong, DING Jianhao, YU Zhaofei, et al. Optimized potential initialization for low-latency spiking neural networks[C]. The AAAI Conference on Artificial Intelligence, Palo Alto, USA, 2022: 11–20.
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  509
  • HTML全文浏览量:  268
  • PDF下载量:  132
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-15
  • 修回日期:  2023-05-25
  • 网络出版日期:  2023-06-09
  • 刊出日期:  2023-12-26

目录

    /

    返回文章
    返回