高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于迁移学习的矿井复杂环境下的自适应信号检测

李旭虹 王廷玥 王安义

李旭虹, 王廷玥, 王安义. 基于迁移学习的矿井复杂环境下的自适应信号检测[J]. 电子与信息学报, 2023, 45(12): 4440-4447. doi: 10.11999/JEIT221442
引用本文: 李旭虹, 王廷玥, 王安义. 基于迁移学习的矿井复杂环境下的自适应信号检测[J]. 电子与信息学报, 2023, 45(12): 4440-4447. doi: 10.11999/JEIT221442
LI Xuhong, WANG Tingyue, WANG Anyi. Adaptive Signal Detection in Complex Mine Environment Based on Transfer Learning[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4440-4447. doi: 10.11999/JEIT221442
Citation: LI Xuhong, WANG Tingyue, WANG Anyi. Adaptive Signal Detection in Complex Mine Environment Based on Transfer Learning[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4440-4447. doi: 10.11999/JEIT221442

基于迁移学习的矿井复杂环境下的自适应信号检测

doi: 10.11999/JEIT221442
基金项目: 国家自然科学基金 (U19B2015)
详细信息
    作者简介:

    李旭虹:女,副教授,研究方向为通信电路与系统技术、无线通信

    王廷玥:男,硕士生,研究方向为智能信息处理

    王安义:男,教授,研究方向为移动通信、智能信息处理及煤矿智能化等

    通讯作者:

    王廷玥 21207040030@stu.xust.edu.cn

  • 中图分类号: TN911.23

Adaptive Signal Detection in Complex Mine Environment Based on Transfer Learning

Funds: The National Natural Science Foundation of China (U19B2015)
  • 摘要: 针对矿井复杂环境下无线信道的衰落动态变化时,离线模型的线上检测表现会遭遇性能下降的问题,该文研究了基于迁移学习的自适应信号检测网络(ADN)。ADN的主要改进是使用并行网络对动态信道离散化以提高网络泛化能力;对线上接收端信号采取域对抗训练神经网络(DANN)的无监督学习方式,从而将离线训练知识迁移到线上矿井复杂环境中并且实时调整网络参数以适应信道的变化,从而实现矿井复杂环境下的自适应信号检测。实验表明对正交相移键控(QPSK)和正交幅度调制(QAM)信号,在动态变化的矿井Nakagami-m衰落信道中,随着离散信道的增加,ADN获得信道间的分集效益,性能逐渐提高。在高信噪比(SNR)时,其性能接近卷积神经网络(CNN),低信噪比时显著提高深度检测网络的鲁棒性和线上检测效果。
  • 图  1  自适应检测网络的子网络结构

    图  2  信道判别器的结构

    图  3  特征提取层与信号检测层的结构

    图  4  ADN的并行结构

    图  5  CNN的离线SER和线上检测SER对比

    图  6  CNN和ADN的线上检测SER

    图  7  ADN的分集效应对比

    图  8  所提自适应方法(ADN)对CNN的改善

    图  9  不同方法的线上检测性能对比

  • [1] FOROOSHANI A E, BASHIR S, MICHELSON D G, et al. A survey of wireless communications and propagation modeling in underground mines[J]. IEEE Communications Surveys & Tutorials, 2013, 15(4): 1524–1545. doi: 10.1109/SURV.2013.031413.00130
    [2] CAI Meifeng, LI Peng, TAN Wenhui, et al. Key engineering technologies to achieve green, intelligent, and sustainable development of deep metal mines in China[J]. Engineering, 2021, 7(11): 1513–1517. doi: 10.1016/j.eng.2021.07.010
    [3] ALBREEM M A, ALHABBASH A H, SHAHABUDDIN S, et al. Deep learning for massive MIMO uplink detectors[J]. IEEE Communications Surveys & Tutorials, 2022, 24(1): 741–766. doi: 10.1109/COMST.2021.3135542
    [4] YE Hao, LI G Y, and JUANG B H. Power of deep learning for channel estimation and signal detection in OFDM systems[J]. IEEE Wireless Communications Letters, 2018, 7(1): 114–117. doi: 10.1109/LWC.2017.2757490
    [5] SAMUEL N, DISKIN T, and WIESEL A. Deep MIMO detection[C]. 2017 IEEE 18th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Sapporo, Japan, 2017: 1–5.
    [6] JEON C, GHODS R, MALEKI A, et al. Optimality of large MIMO detection via approximate message passing[C]. 2015 IEEE International Symposium on Information Theory (ISIT), Hong Kong, China, 2015: 1227–1231.
    [7] JIN Xianglan and KIM H N. Parallel deep learning detection network in the MIMO channel[J]. IEEE Communications Letters, 2020, 24(1): 126–130. doi: 10.1109/LCOMM.2019.2950201
    [8] SAMUEL N, DISKIN T, and WIESEL A. Learning to detect[J]. IEEE Transactions on Signal Processing, 2019, 67(10): 2554–2564. doi: 10.1109/TSP.2019.2899805
    [9] SUN Li, WANG Yuwei, SWINDLEHURST A L, et al. Generative-adversarial-network enabled signal detection for communication systems with unknown channel models[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(1): 47–60. doi: 10.1109/JSAC.2020.3036954
    [10] LI Yongbin, WANG Bin, SHAO Gaoping, et al. Blind detection of underwater acoustic communication signals based on deep learning[J]. IEEE Access, 2020, 8: 204114–204131. doi: 10.1109/ACCESS.2020.3036883
    [11] VAN HUYNH N and LI G Y. Transfer learning for signal detection in wireless networks[J]. IEEE Wireless Communications Letters, 2022, 11(11): 2325–2329. doi: 10.1109/LWC.2022.3202117
    [12] GANIN Y, USTINOVA E, AJAKAN H, et al. Domain-adversarial training of neural networks[J]. The Journal of Machine Learning Research, 2016, 17(1): 2096–2030.
    [13] 臧文华. 基于生成对抗网络的迁移学习算法研究[D]. [硕士论文], 电子科技大学, 2018.

    ZANG Wenhua. Research on transfer learning based on generative adversarial networks[D]. [Master dissertation], University of Electronic Science and Technology of China, 2018.
    [14] BAEK M S, KWAK S, JUNG J Y, et al. Implementation methodologies of deep learning-based signal detection for conventional MIMO transmitters[J]. IEEE Transactions on Broadcasting, 2019, 65(3): 636–642. doi: 10.1109/TBC.2019.2891051
    [15] WANG Shengyao, YAO Rugui, TSIFTSIS T A, et al. Signal detection in uplink time-varying OFDM systems using RNN with bidirectional LSTM[J]. IEEE Wireless Communications Letters, 2020, 9(11): 1947–1951. doi: 10.1109/LWC.2020.3009170
    [16] ZHANG Yiqing, SUN Jianyong, XUE Jiang, et al. Deep expectation-maximization for joint MIMO channel estimation and signal detection[J]. IEEE Transactions on Signal Processing, 2022, 70: 4483–4497. doi: 10.1109/TSP.2022.3205478
    [17] WANG Anyi, FENG Zhiyuan, LI Xuhong, et al. Mine intelligent receiver: MIMO-OFDM intelligent receiver for mine information recovery[J]. Energies, 2022, 15(18): 6550. doi: 10.3390/en15186550
    [18] PAN S J, TSANG I W, KWOK J T, et al. Domain adaptation via transfer component analysis[J]. IEEE Transactions on Neural Networks, 2011, 22(2): 199–210. doi: 10.1109/TNN.2010.2091281
    [19] 蒋伊琳, 尹子茹, 宋宇. 基于卷积神经网络的低截获概率雷达信号检测算法[J]. 电子与信息学报, 2022, 44(2): 718–725. doi: 10.11999/JEIT210132

    JIANG Yilin, YIN Ziru, and SONG Yu. Low probability of intercept radar signal detection algorithm based on convolutional neural networks[J]. Journal of Electronics &Information Technology, 2022, 44(2): 718–725. doi: 10.11999/JEIT210132
    [20] SHIN H C, ROTH H R, GAO Mingchen, et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning[J]. IEEE Transactions on Medical Imaging, 2016, 35(5): 1285–1298. doi: 10.1109/TMI.2016.2528162
  • 加载中
图(9)
计量
  • 文章访问数:  469
  • HTML全文浏览量:  145
  • PDF下载量:  132
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-16
  • 修回日期:  2023-03-15
  • 网络出版日期:  2023-03-17
  • 刊出日期:  2023-12-26

目录

    /

    返回文章
    返回