[1] |
FOROOSHANI A E, BASHIR S, MICHELSON D G, et al. A survey of wireless communications and propagation modeling in underground mines[J]. IEEE Communications Surveys & Tutorials, 2013, 15(4): 1524–1545. doi: 10.1109/SURV.2013.031413.00130
|
[2] |
CAI Meifeng, LI Peng, TAN Wenhui, et al. Key engineering technologies to achieve green, intelligent, and sustainable development of deep metal mines in China[J]. Engineering, 2021, 7(11): 1513–1517. doi: 10.1016/j.eng.2021.07.010
|
[3] |
ALBREEM M A, ALHABBASH A H, SHAHABUDDIN S, et al. Deep learning for massive MIMO uplink detectors[J]. IEEE Communications Surveys & Tutorials, 2022, 24(1): 741–766. doi: 10.1109/COMST.2021.3135542
|
[4] |
YE Hao, LI G Y, and JUANG B H. Power of deep learning for channel estimation and signal detection in OFDM systems[J]. IEEE Wireless Communications Letters, 2018, 7(1): 114–117. doi: 10.1109/LWC.2017.2757490
|
[5] |
SAMUEL N, DISKIN T, and WIESEL A. Deep MIMO detection[C]. 2017 IEEE 18th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Sapporo, Japan, 2017: 1–5.
|
[6] |
JEON C, GHODS R, MALEKI A, et al. Optimality of large MIMO detection via approximate message passing[C]. 2015 IEEE International Symposium on Information Theory (ISIT), Hong Kong, China, 2015: 1227–1231.
|
[7] |
JIN Xianglan and KIM H N. Parallel deep learning detection network in the MIMO channel[J]. IEEE Communications Letters, 2020, 24(1): 126–130. doi: 10.1109/LCOMM.2019.2950201
|
[8] |
SAMUEL N, DISKIN T, and WIESEL A. Learning to detect[J]. IEEE Transactions on Signal Processing, 2019, 67(10): 2554–2564. doi: 10.1109/TSP.2019.2899805
|
[9] |
SUN Li, WANG Yuwei, SWINDLEHURST A L, et al. Generative-adversarial-network enabled signal detection for communication systems with unknown channel models[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(1): 47–60. doi: 10.1109/JSAC.2020.3036954
|
[10] |
LI Yongbin, WANG Bin, SHAO Gaoping, et al. Blind detection of underwater acoustic communication signals based on deep learning[J]. IEEE Access, 2020, 8: 204114–204131. doi: 10.1109/ACCESS.2020.3036883
|
[11] |
VAN HUYNH N and LI G Y. Transfer learning for signal detection in wireless networks[J]. IEEE Wireless Communications Letters, 2022, 11(11): 2325–2329. doi: 10.1109/LWC.2022.3202117
|
[12] |
GANIN Y, USTINOVA E, AJAKAN H, et al. Domain-adversarial training of neural networks[J]. The Journal of Machine Learning Research, 2016, 17(1): 2096–2030.
|
[13] |
臧文华. 基于生成对抗网络的迁移学习算法研究[D]. [硕士论文], 电子科技大学, 2018.ZANG Wenhua. Research on transfer learning based on generative adversarial networks[D]. [Master dissertation], University of Electronic Science and Technology of China, 2018.
|
[14] |
BAEK M S, KWAK S, JUNG J Y, et al. Implementation methodologies of deep learning-based signal detection for conventional MIMO transmitters[J]. IEEE Transactions on Broadcasting, 2019, 65(3): 636–642. doi: 10.1109/TBC.2019.2891051
|
[15] |
WANG Shengyao, YAO Rugui, TSIFTSIS T A, et al. Signal detection in uplink time-varying OFDM systems using RNN with bidirectional LSTM[J]. IEEE Wireless Communications Letters, 2020, 9(11): 1947–1951. doi: 10.1109/LWC.2020.3009170
|
[16] |
ZHANG Yiqing, SUN Jianyong, XUE Jiang, et al. Deep expectation-maximization for joint MIMO channel estimation and signal detection[J]. IEEE Transactions on Signal Processing, 2022, 70: 4483–4497. doi: 10.1109/TSP.2022.3205478
|
[17] |
WANG Anyi, FENG Zhiyuan, LI Xuhong, et al. Mine intelligent receiver: MIMO-OFDM intelligent receiver for mine information recovery[J]. Energies, 2022, 15(18): 6550. doi: 10.3390/en15186550
|
[18] |
PAN S J, TSANG I W, KWOK J T, et al. Domain adaptation via transfer component analysis[J]. IEEE Transactions on Neural Networks, 2011, 22(2): 199–210. doi: 10.1109/TNN.2010.2091281
|
[19] |
蒋伊琳, 尹子茹, 宋宇. 基于卷积神经网络的低截获概率雷达信号检测算法[J]. 电子与信息学报, 2022, 44(2): 718–725. doi: 10.11999/JEIT210132JIANG Yilin, YIN Ziru, and SONG Yu. Low probability of intercept radar signal detection algorithm based on convolutional neural networks[J]. Journal of Electronics &Information Technology, 2022, 44(2): 718–725. doi: 10.11999/JEIT210132
|
[20] |
SHIN H C, ROTH H R, GAO Mingchen, et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning[J]. IEEE Transactions on Medical Imaging, 2016, 35(5): 1285–1298. doi: 10.1109/TMI.2016.2528162
|