高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

灾后应急通信网络下的中继选择与轨迹优化研究

陈海华 高飞帆 何明

陈海华, 高飞帆, 何明. 灾后应急通信网络下的中继选择与轨迹优化研究[J]. 电子与信息学报, 2023, 45(10): 3648-3656. doi: 10.11999/JEIT221398
引用本文: 陈海华, 高飞帆, 何明. 灾后应急通信网络下的中继选择与轨迹优化研究[J]. 电子与信息学报, 2023, 45(10): 3648-3656. doi: 10.11999/JEIT221398
CHEN Haihua, GAO Feifan, HE Ming. Research on Relay Selection and Trajectory Optimization in Post-disaster Emergency Communication Network[J]. Journal of Electronics & Information Technology, 2023, 45(10): 3648-3656. doi: 10.11999/JEIT221398
Citation: CHEN Haihua, GAO Feifan, HE Ming. Research on Relay Selection and Trajectory Optimization in Post-disaster Emergency Communication Network[J]. Journal of Electronics & Information Technology, 2023, 45(10): 3648-3656. doi: 10.11999/JEIT221398

灾后应急通信网络下的中继选择与轨迹优化研究

doi: 10.11999/JEIT221398
基金项目: 国家自然科学基金(61973173)
详细信息
    作者简介:

    陈海华:女,副教授,研究方向为通信信号处理和无线网络

    高飞帆:男,硕士生,研究方向为无线通信信号处理

    何明:男,教授,研究方向为微波通信和智能传感

    通讯作者:

    高飞帆 2120210294@mail.nankai.edu.cn

  • 中图分类号: TN925

Research on Relay Selection and Trajectory Optimization in Post-disaster Emergency Communication Network

Funds: The National Natural Science Foundation of China (61973173)
  • 摘要: 近年来,无人机(UAVs)凭借其机动灵活的特点,广泛应用于灾后救援工作。针对灾后应急通信网络下勘察无人机执行任务的场景,为了延长应急通信网络的整体续航时间,该文考虑了中继无人机的可用通信能量以及勘察无人机的最大飞行速度和实时通信质量,通过联合优化中继选择和飞行轨迹来实现系统的能量效率最大化。对于所涉及的非确定性多项式难度(NP-hard)优化问题,该文提出一种基于连续凸近似和禁忌搜索的交替迭代算法,将原问题拆成两个子问题交替求解,得到优化问题的近似最优解。仿真结果表明,该文所提算法具有较好的收敛性,可以有效提高系统的能量效率,相比于只优化中继和只优化轨迹的基准方案,能够提升31.1%和28.2%的性能。
  • 图  1  系统模型

    图  2  TS算法流程图

    图  3  交替迭代算法流程图

    图  4  仿真区域

    图  5  收敛性验证

    图  6  不同方案下的飞行轨迹

    图  7  能量效率与最大飞行速度的关系

    图  8  能量效率与可用通信能量的关系

    图  9  能量效率与数据传输速率阈值的关系

    图  10  M=25时能量效率和最大飞行速度的关系

    图  11  M=36时能量效率和最大飞行速度的关系

    表  1  仿真参数

    参数符号设定值
    中继无人机数量 (个)M16
    时间范围 (s)T200
    时隙数量 (个)N200
    TS算法的收敛阈值${\varepsilon _0}$10–2
    交替迭代算法的收敛阈值${\eta _0}$10–2
    中继无人机的悬停高度 (m)H(U)50[6]
    勘察无人机的飞行高度 (m)H(S)20[6]
    中继无人机的发射功率 (dBm)pm30[3]
    勘察无人机的发射功率 (dBm)PS27[3]
    单位距离时的信道增益 (dB)${\beta _0}$–40[22]
    中继无人机的接收噪声功率 (dBm)$\sigma _{n,m}^2$–100
    勘察无人机的接收噪声功率 (dBm)$\delta _{n,m}^2$–100
    勘察无人机的最大飞行速度 (m/s)V13
    中继无人机的可用通信能量 (J)Em60
    数据传输速率阈值 (bit/(Hz·s))Rmin4.6
    下载: 导出CSV
  • [1] LIU Xiaonan, LI Zan, ZHAO Nan, et al. Transceiver design and multihop D2D for UAV IoT coverage in disasters[J]. IEEE Internet of Things Journal, 2019, 6(2): 1803–1815. doi: 10.1109/JIOT.2018.2877504
    [2] AKRAM T, AWAIS M, NAQVI R, et al. Multicriteria UAV base stations placement for disaster management[J]. IEEE Systems Journal, 2020, 14(3): 3475–3482. doi: 10.1109/JSYST.2020.2970157
    [3] 王博文, 孙彦景. 基于联盟图博弈的地下空间无人机应急通信网络拓扑控制算法[J]. 电子与信息学报, 2022, 44(3): 996–1005. doi: 10.11999/JEIT211205

    WANG Bowen and SUN Yanjing. Coalitional graph game based topology control algorithm for unmanned aerial vehicle emergency networks in underground space[J]. Journal of Electronics &Information Technology, 2022, 44(3): 996–1005. doi: 10.11999/JEIT211205
    [4] WANG Jingjing, ZHU Shuang, LUO Xiangang, et al. Refined micro-scale geological disaster susceptibility evaluation based on UAV tilt photography data and weighted certainty factor method in Mountainous Area[J]. Ecotoxicology and Environmental Safety, 2020, 189: 110005. doi: 10.1016/j.ecoenv.2019.110005
    [5] LIN Na, LIU Yuheng, ZHAO Liang, et al. An adaptive UAV deployment scheme for emergency networking[J]. IEEE Transactions on Wireless Communications, 2022, 21(4): 2383–2398. doi: 10.1109/TWC.2021.3111991
    [6] YBAÑEZ R L, YBAÑEZ A A B, LAGMAY A M F A, et al. Imaging ground surface deformations in post-disaster settings via small UAVs[J]. Geoscience Letters, 2021, 8(1): 23. doi: 10.1186/s40562-021-00194-8
    [7] MERWADAY A, TUNCER A, KUMBHAR A, et al. Improved throughput coverage in natural disasters: Unmanned aerial base stations for public-safety communications[J]. IEEE Vehicular Technology Magazine, 2016, 11(4): 53–60. doi: 10.1109/MVT.2016.2589970
    [8] DO-DUY T, NGUYEN L D, DUONG T Q, et al. Joint optimisation of real-time deployment and resource allocation for UAV-aided disaster emergency communications[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(11): 3411–3424. doi: 10.1109/JSAC.2021.3088662
    [9] DENG Dan and ZHOU Qingfeng. Outdated relay selection for UAV-enabled networks with cooperative NOMA[J]. Physical Communication, 2019, 32: 112–119. doi: 10.1016/j.phycom.2018.11.005
    [10] LIU Dianxiong, WANG Jinlong, XU Kun, et al. Task-driven relay assignment in distributed UAV communication networks[J]. IEEE Transactions on Vehicular Technology, 2019, 68(11): 11003–11017. doi: 10.1109/TVT.2019.2942095
    [11] EJAZ W, AHMED A, MUSHTAQ A, et al. Energy-efficient task scheduling and physiological assessment in disaster management using UAV-assisted networks[J]. Computer Communications, 2020, 155: 150–157. doi: 10.1016/j.comcom.2020.03.019
    [12] WANG Bowen, SUN Yanjing, LIU Dianxiong, et al. Social-aware UAV-assisted mobile crowd sensing in stochastic and dynamic environments for disaster relief networks[J]. IEEE Transactions on Vehicular Technology, 2020, 69(1): 1070–1074. doi: 10.1109/TVT.2019.2949634
    [13] GUO Qing, PENG Jian, XU Wenzheng, et al. Minimizing the longest tour time among a fleet of UAVs for disaster area surveillance[J]. IEEE Transactions on Mobile Computing, 2022, 21(7): 2451–2465. doi: 10.1109/TMC.2020.3038156
    [14] JI Jiequ, ZHU Kun, NIYATO D, et al. Joint cache placement, flight trajectory, and transmission power optimization for multi-UAV assisted wireless networks[J]. IEEE Transactions on Wireless Communications, 2020, 19(8): 5389–5403. doi: 10.1109/TWC.2020.2992926
    [15] WU Qingqing, ZENG Yong, and ZHANG rui. Joint trajectory and communication design for multi-UAV enabled wireless networks[J]. IEEE Transactions on Wireless Communications, 2018, 17(3): 2109–2121. doi: 10.1109/TWC.2017.2789293
    [16] MATTINGLEY J and BOYD S. Real-time convex optimization in signal processing[J]. IEEE Signal Processing Magazine, 2010, 27(3): 50–61. doi: 10.1109/MSP.2010.936020
    [17] NGUYEN N T and LEE K. Groupwise neighbor examination for Tabu search detection in large MIMO systems[J]. IEEE Transactions on Vehicular Technology, 2020, 69(1): 1136–1140. doi: 10.1109/TVT.2019.2953635
    [18] GAO Xinyu, DAI Linglong, YUEN C, et al. Turbo-like beamforming based on Tabu search algorithm for millimeter-wave massive MIMO systems[J]. IEEE Transactions on Vehicular Technology, 2016, 65(7): 5731–5737. doi: 10.1109/TVT.2015.2461440
    [19] POLAT O. A parallel variable neighborhood search for the vehicle routing problem with divisible deliveries and pickups[J]. Computers & Operations Research, 2017, 85: 71–86. doi: 10.1016/j.cor.2017.03.009
    [20] XIA Yangkun and FU Zhuo. Improved Tabu search algorithm for the open vehicle routing problem with soft time windows and satisfaction rate[J]. Cluster Computing, 2019, 22(4): 8725–8733. doi: 10.1007/s10586-018-1957-x
    [21] YOU Changsheng and ZHANG Rui. Hybrid offline-online design for UAV-enabled data harvesting in probabilistic LoS channels[J]. IEEE Transactions on Wireless Communications, 2020, 19(6): 3753–3768. doi: 10.1109/TWC.2020.2978073
    [22] ZENG Yong, XU Xiaoli, and ZHANG Rui. Trajectory design for completion time minimization in UAV-enabled multicasting[J]. IEEE Transactions on Wireless Communications, 2018, 17(4): 2233–2246. doi: 10.1109/TWC.2018.2790401
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  461
  • HTML全文浏览量:  149
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-08
  • 修回日期:  2023-06-27
  • 网络出版日期:  2023-07-03
  • 刊出日期:  2023-10-31

目录

    /

    返回文章
    返回