## 留言板

 引用本文: 郭锐, 孙荷, 杨沛. 基于关键翻转集合的极化码Fast-SSC-Flip译码算法[J]. 电子与信息学报, 2023, 45(10): 3594-3602.
GUO Rui, SUN He, YANG Pei. Fast-SSC-Flip Decoding Algorithm Based on Critical Flip Set for Polar Code[J]. Journal of Electronics & Information Technology, 2023, 45(10): 3594-3602. doi: 10.11999/JEIT221392
 Citation: GUO Rui, SUN He, YANG Pei. Fast-SSC-Flip Decoding Algorithm Based on Critical Flip Set for Polar Code[J]. Journal of Electronics & Information Technology, 2023, 45(10): 3594-3602.

• 中图分类号: TN914

## Fast-SSC-Flip Decoding Algorithm Based on Critical Flip Set for Polar Code

• 摘要: 为了降低极化码快速简化串行抵消翻转(Fast-SSC-Flip)译码算法的候选翻转比特集合大小，减小搜索复杂度，该文提出一种基于关键翻转集合的极化码Fast-SSC-Flip译码算法。基于快速简化串行抵消(Fast-SSC)译码过程中首位译码错误信息比特有极大的概率落于关键集合(CS)中，以及Fast-SSC-Flip译码算法的候选比特均为码字比特，所提算法利用极化码的生成矩阵得到与CS中信息比特相应的码字比特，并用这些码字比特构建关键翻转集合(CFS)作为候选翻转比特集合。实验结果表明，在使用相同候选比特可靠性度量准则的前提下，在码长$N = 1\;024$及码率$R = 0.5$时，该文所提基于关键翻转集合的Fast-SSC-Flip译码算法相较于传统Fast-SSC-Flip算法在不损失译码性能的情况下，候选翻转集合大小显著降低；相较于新的快速简化串行抵消翻转(N-Fast-SSC-Flip)算法有相近的译码性能，但候选翻转集合至少缩小了77.93%。
• 图  1  $(N,K) = (8,4)$的极化码SC译码树

图  2  $(N,K) = (8,4)$的极化码Fast-SSC译码树

图  3  极化码SC译码树以及Fast-SSC译码树

图  4  译码树SPC节点对应子树结构

图  5  CFS-Fast-SSC-Flip译码算法与各种译码算法在$R = 0.5$时BER性能比较图

图  6  CFS-Fast-SSC-Flip译码算法与各种译码算法在$R = 0.5$时FER性能比较图

•  [1] ARIKAN E. Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels[J]. IEEE Transactions on Information Theory, 2009, 55(7): 3051–3073. [2] AFISIADIS O, BALATSOUKAS-STIMMING A, and BURG A. A low-complexity improved successive cancellation decoder for polar codes[C]. The 48th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 2014: 2116–2120. [3] CHANDESRIS L, SAVIN V, and DECLERCQ D. Dynamic-SCFlip decoding of polar codes[J]. IEEE Transactions on Communications, 2018, 66(6): 2333–2345. [4] ZHANG Xueting, LIU Yingzhuang, and CHEN Shaoping. BER evaluation based SCFlip algorithm for polar codes decoding[J]. IEEE Access, 2020, 8: 3042–3054. [5] QIAO Xinyuan, CUI Hangxuan, LIN Jun, et al. Reducing search complexity of dynamic SC-Flip decoding for polar codes[C]. The 7th International Conference on Computer and Communications (ICCC), Chengdu, China, 2021: 27–31. [6] ERCAN F and GROSS W J. Fast thresholded SC-flip decoding of polar codes[C]. 2020 IEEE International Conference on Communications, Dublin, Ireland, 2020: 1–7. [7] DAI Bin, GAO Chenyu, YAN Zhiyuan, et al. Parity check aided SC-flip decoding algorithms for polar codes[J]. IEEE Transactions on Vehicular Technology, 2021, 70(10): 10359–10368. [8] ALAMDAR-YAZDI A and KSCHISCHANG F R. A simplified successive-cancellation decoder for polar codes[J]. IEEE Communications Letters, 2011, 15(12): 1378–1380. [9] SARKIS G, GIARD P, VARDY A, et al. Fast polar decoders: Algorithm and implementation[J]. IEEE Journal on Selected Areas in Communications, 2014, 32(5): 946–957. [10] HANIF M and ARDAKANI M. Fast successive-cancellation decoding of polar codes: Identification and decoding of new nodes[J]. IEEE Communications Letters, 2017, 21(11): 2360–2363. [11] GIARD P and BURG A. Fast-SSC-flip decoding of polar codes[C]. IEEE Wireless Communications and Networking Conference Workshops (WCNCW), Barcelona, Spain, 2018: 73–77. [12] ZHOU Yangcan, LIN Jun, and WANG Zhongfeng. A new fast-SSC-flip decoding of polar codes[C]. IEEE International Conference on Communications (ICC), Shanghai, China, 2019: 1–6. [13] ZHOU Yangcan, LIN Jun, and WANG Zhongfeng. Improved fast-SSC-flip decoding of polar codes[J]. IEEE Communications Letters, 2019, 23(6): 950–953. [14] JAN Q, HUSSAIN S, LIU Zechen, et al. Improved partitioned fast-SSC-flip decoding for polar coded[C]. The 7th International Conference on Computer and Communication Systems (ICCCS), Wuhan, China, 2022: 382–386. [15] WANG Xiumin, WANG Ting, LI Jun, et al. Improved multiple bit-flipping fast-SSC decoding of polar codes[J]. IEEE Access, 2020, 8: 27851–27860. [16] JAN Q, HUSSAIN S, FURQAN M, et al. Parity-check-CRC concatenated polar codes SSCFlip decoder[J]. Electronics, 2022, 11(23): 3839. [17] GUO Rui, YANG Pei, YING Na, et al. Multiple node flip fast-SSC decoding algorithm for polar codes based on node reliability[J]. KSII Transactions on Internet and Information Systems, 2022, 16(2): 658–675. [18] MONDELLI M, HASHEMI S A, CIOFFI J M, et al. Sublinear latency for simplified successive cancellation decoding of polar codes[J]. IEEE Transactions on Wireless Communications, 2021, 20(1): 18–27.

##### 计量
• 文章访问数:  411
• HTML全文浏览量:  267
• PDF下载量:  31
• 被引次数: 0
##### 出版历程
• 收稿日期:  2022-11-07
• 修回日期:  2023-08-14
• 网络出版日期:  2023-08-18
• 刊出日期:  2023-10-31

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈