高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于鲁棒优化的卫星虚拟网络准入控制与资源分配研究

梁承超 柏耀辅 陈前斌

梁承超, 柏耀辅, 陈前斌. 基于鲁棒优化的卫星虚拟网络准入控制与资源分配研究[J]. 电子与信息学报, 2023, 45(12): 4327-4335. doi: 10.11999/JEIT221381
引用本文: 梁承超, 柏耀辅, 陈前斌. 基于鲁棒优化的卫星虚拟网络准入控制与资源分配研究[J]. 电子与信息学报, 2023, 45(12): 4327-4335. doi: 10.11999/JEIT221381
LIANG Chengchao, BAI Yaofu, CHEN Qianbin. Research on Satellite Virtual Network Admission Control and Resource Allocation Based on Robust Optimization[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4327-4335. doi: 10.11999/JEIT221381
Citation: LIANG Chengchao, BAI Yaofu, CHEN Qianbin. Research on Satellite Virtual Network Admission Control and Resource Allocation Based on Robust Optimization[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4327-4335. doi: 10.11999/JEIT221381

基于鲁棒优化的卫星虚拟网络准入控制与资源分配研究

doi: 10.11999/JEIT221381
基金项目: “十三五”民用航天技术预先研究(D030301),国家自然科学基金(62001076, 62071078),重庆市自然科学基金(cstc2020jcyj-msxmX0878)
详细信息
    作者简介:

    梁承超:男,教授,博士生导师,研究方向无线通信、空天地一体化网络、(卫星)互联网架构与协议等

    柏耀辅:男,硕士生,研究方向为空天地一体化、星地融合、鲁棒优化

    陈前斌:男,教授,博士生导师,研究方向为空天地一体化、多媒体信息处理与传输、异构蜂窝网络等

    通讯作者:

    陈前斌 chenqb@cqupt.edu.cn

  • 中图分类号: TN927

Research on Satellite Virtual Network Admission Control and Resource Allocation Based on Robust Optimization

Funds: 135 Civil Aerospace Technology Advance Research Project (D030301), The National Natural Science Foundation of China (62001076, 62071078), The Natural Science Foundation of Chongqing (cstc2020jcyj-msxmX0878)
  • 摘要: 网络虚拟化是一项未来网络发展的重要技术。针对卫星虚拟网络(SVN)中用户服务质量(QoS)可能受到严重影响的问题,该文提出一种用于SVN准入控制的方法,通过限制嵌入卫星物理网络中SVN的数量可以有效保证用户的QoS。具体而言,首先,该文提出一种两阶段SVN嵌入机制,该机制将短期资源分配与长期准入控制和资源租赁解耦。其次,该文同时考虑用户到达率时变导致流量需求不确定和卫星网络拓扑高动态性导致系统容量不确定的情况,将第1阶段的准入控制和资源租赁问题描述为鲁棒优化问题,再利用伯恩施坦近似将其转化为凸问题进行求解。最后,该文将第2阶段的资源分配问题转化为最大化公平带宽分配的凸问题进行求解。仿真结果表明了该文所提方法的有效性。
  • 图  1  网络模型

    图  2  SVN两阶段嵌入机制

    图  3  平均SVN阻塞率变化趋势

    图  4  不同准入控制策略的系统稳定率

    图  5  不同准入控制策略的用户满意度

    图  6  不同准入控制策略的资源利用率

    表  1  仿真参数设置

    参数名称取值参数名称取值
    卫星数5平均用户到达率最大不确定性±20%
    卫星轨道高度781 km卫星容量估计最大不确定性±10%
    卫星均匀分布范围(89°W ~91°W, 44°N~46°N)卫星可租赁资源上限$p_n^{\max }$Uniform[0.85,0.95]
    用户随机分布范围(85°W~95°W, 40°N~50°N)网络状态比例常数${\alpha _n}$0.5
    下行链路工作频段1616~1626.5 MHz租赁价格2 unit/MHz
    卫星最大发射天线增益41.6 dBi准入SVN收入1 unit/SVN
    用户接收天线增益20 dBi拒绝SVN惩罚2 unit/SVN
    噪声功率密度–174 dBm/Hz用户数据速率{0.5,0.6,0.7} Mbit/s
    下载: 导出CSV
  • [1] GIORDANI M and ZORZI M. Non-terrestrial networks in the 6G era: Challenges and opportunities[J]. IEEE Network, 2021, 35(2): 244–251. doi: 10.1109/MNET.011.2000493
    [2] WANG Ruibo, KISHK M A, and ALOUINI M S. Ultra-dense LEO satellite-based communication systems: A novel modeling technique[J]. IEEE Communications Magazine, 2022, 60(4): 25–31. doi: 10.1109/MCOM.001.2100800
    [3] LIU Shicong, GAO Zhen, WU Yongpeng, et al. LEO satellite constellations for 5G and beyond: How will they reshape vertical domains?[J]. IEEE Communications Magazine, 2021, 59(7): 30–36. doi: 10.1109/MCOM.001.2001081
    [4] CAO Suzhi, WEI Junyong, HAN Hao, et al. Space edge cloud enabling network slicing for 5G satellite network[C]. 2019 15th International Wireless Communications & Mobile Computing Conference, Tangier, Morocco, 2019: 787–792.
    [5] RODRIGUES T K and KATO N. Network slicing with centralized and distributed reinforcement learning for combined satellite/ground networks in a 6G environment[J]. IEEE Wireless Communications, 2022, 29(1): 104–110. doi: 10.1109/MWC.001.2100287
    [6] MENDOZA F, MINARDI M, CHATZINOTAS S, et al. An SDN based testbed for dynamic network slicing in satellite-terrestrial networks[C]. 2021 IEEE International Mediterranean Conference on Communications and Networking, Athens, Greece, 2021: 36–41.
    [7] BARAKABITZE A A, AHMAD A, MIJUMBI R, et al. 5G network slicing using SDN and NFV: A survey of taxonomy, architectures and future challenges[J]. Computer Networks, 2020, 167: 106984. doi: 10.1016/j.comnet.2019.106984
    [8] KODHELI O, LAGUNAS E, MATURO N, et al. Satellite communications in the new space era: A survey and future challenges[J]. IEEE Communications Surveys & Tutorials, 2021, 23(1): 70–109. doi: 10.1109/COMST.2020.3028247
    [9] HAN Bin, FENG Di, JI Lianghai, et al. A profit-maximizing strategy of network resource management for 5G tenant slices[J]. arXiv preprint arXiv: 1709.09229, 2017.
    [10] CHALLA R, ZALYUBOVSKIY V V, RAZA S M, et al. Network slice admission model: Tradeoff between monetization and rejections[J]. IEEE Systems Journal, 2020, 14(1): 657–660. doi: 10.1109/JSYST.2019.2904667
    [11] SCIANCALEPORE V, COSTA-PEREZ X, and BANCHS A. RL-NSB: Reinforcement learning-based 5G network slice broker[J]. IEEE/ACM Transactions on Networking, 2019, 27(4): 1543–1557. doi: 10.1109/TNET.2019.2924471
    [12] LIU Jiang, HE Xiaochun, CHEN Tianjiao, et al. SN-VNE: A virtual network embedding algorithm for satellite networks[C]. 2019 IEEE/CIC International Conference on Communications Workshops in China, Changchun, China, 2019: 1–6.
    [13] LIU Zhiguo and WU Junhua. Mobile satellite network virtual mapping algorithm based on node risk[C]. 2016 International Conference on Network and Information Systems for Computers, Wuhan, China, 2016: 76–79.
    [14] LIANG Chengchao and YU F R. Wireless virtualization for next generation mobile cellular networks[J]. IEEE Wireless Communications, 2015, 22(1): 61–69. doi: 10.1109/MWC.2015.7054720
    [15] WANG Xin, KRISHNAMURTHY P, and TIPPER D. Wireless network virtualization[C]. 2013 International Conference on Computing, Networking and Communications, San Diego, USA, 2013: 818–822.
    [16] RENGARAJAN B and DE VECIANA G. Architecture and abstractions for environment and traffic-aware system-level coordination of wireless networks[J]. IEEE/ACM Transactions on Networking, 2011, 19(3): 721–734. doi: 10.1109/TNET.2010.2098043
    [17] International Telecommunication Union-Radio (ITU-R). ITU-R S. 1528 Satellite antenna radiation patterns for non-geostationary orbit satellite antennas operating in the fixed-satellite service below 30 GHz[S]. 2001.
    [18] ZAKI Y. Future Mobile Communications: LTE Optimization and Mobile Network Virtualization[M]. Wiesbaden: Springer, 2012.
    [19] BEN-TAL A and NEMIROVSKI A. Selected topics in robust convex optimization[J]. Mathematical Programming, 2008, 112(1): 125–158. doi: 10.1007/s10107-006-0092-2
    [20] LIU Zhixin, XIE Yuan’ai, CHAN K Y, et al. Chance-constrained optimization in D2D-based vehicular communication network[J]. IEEE Transactions on Vehicular Technology, 2019, 68(5): 5045–5058. doi: 10.1109/TVT.2019.2904291
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  376
  • HTML全文浏览量:  205
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-03
  • 修回日期:  2023-08-31
  • 网络出版日期:  2023-09-05
  • 刊出日期:  2023-12-26

目录

    /

    返回文章
    返回