高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于DT-LIF神经元与SSD的脉冲神经网络目标检测方法

周雅 栗心怡 武喜艳 赵宇飞 宋勇

周雅, 栗心怡, 武喜艳, 赵宇飞, 宋勇. 基于DT-LIF神经元与SSD的脉冲神经网络目标检测方法[J]. 电子与信息学报, 2023, 45(8): 2722-2730. doi: 10.11999/JEIT221367
引用本文: 周雅, 栗心怡, 武喜艳, 赵宇飞, 宋勇. 基于DT-LIF神经元与SSD的脉冲神经网络目标检测方法[J]. 电子与信息学报, 2023, 45(8): 2722-2730. doi: 10.11999/JEIT221367
ZHOU Ya, LI Xinyi, WU Xiyan, ZHAO Yufei, SONG Yong. Object Detection Method with Spiking Neural Network Based on DT-LIF Neuron and SSD[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2722-2730. doi: 10.11999/JEIT221367
Citation: ZHOU Ya, LI Xinyi, WU Xiyan, ZHAO Yufei, SONG Yong. Object Detection Method with Spiking Neural Network Based on DT-LIF Neuron and SSD[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2722-2730. doi: 10.11999/JEIT221367

基于DT-LIF神经元与SSD的脉冲神经网络目标检测方法

doi: 10.11999/JEIT221367
基金项目: 国家自然科学基金(82272130, U22A20103)
详细信息
    作者简介:

    周雅:女,副教授,研究方向为智能光电信息处理

    栗心怡:女,硕士生,研究方向为类脑计算

    武喜艳:女,博士生,研究方向为脉冲神经网络及其应用

    赵宇飞:男,博士后,研究方向为面向计算机视觉的类脑计算

    宋勇:男,教授,研究方向为类脑计算、智能交互等

    通讯作者:

    宋勇 yongsong@bit.edu.cn

  • 中图分类号: TN911.73; TP391.41

Object Detection Method with Spiking Neural Network Based on DT-LIF Neuron and SSD

Funds: The National Natural Science Foundation of China (82272130, U22A20103)
  • 摘要: 相对于传统人工神经网络(ANN),脉冲神经网络(SNN)具有生物可解释性、计算效率高等优势。然而,对于目标检测任务,SNN存在训练难度大、精度低等问题。针对上述问题,该文提出一种基于动态阈值LIF神经元(DT-LIF)与单镜头多盒检测器(SSD)的SNN目标检测方法。首先,设计了一种DT-LIF神经元模型,该模型可根据累积的膜电位动态调整神经元的阈值,以驱动深层网络的脉冲活动,提高推理速度。同时,以DT-LIF神经元为基元,构建了一种基于SSD的混合SNN。该网络以脉冲视觉几何群网络(Spiking VGG)和脉冲密集连接卷积网络(Spiking DenseNet)为主干(Backbone),具有由批处理归一化(BN)层、脉冲卷积(SC)层与DT-LIF神经元构成的3个额外层和SSD预测框头(Head)。实验结果表明,相对于LIF神经元网络,DT-LIF神经元网络在Prophesee GEN1数据集上的目标检测精度提高了25.2%。对比AsyNet算法,所提方法的目标检测精度提高了17.9%。
  • 图  1  LIF神经元模型等效电路

    图  2  基于DT-LIF神经元与SSD的目标检测算法的结构

    图  3  DT-LIF神经元模型示意图

    图  4  Spiking VGG网络结构图(以VGG11为例)

    图  5  Spiking DenseNet网络结构图(以DenseNet121为例)

    图  6  Prophesee GEN1数据集示例

    图  7  训练损失(Loss)曲线图

    算法1 DT-LIF发射脉冲过程
     参数:θ, p, q, Vth, τm
     (1) θ = Vth = 1; V = 0; Vreset = 0 // 初始化
     (2) for t = 1 to timesteps do
     (3)  for l = 2 to L do
     (4)   for i = 1 to neurons do
     (5)    $ H_{i,t}^l $ = $ V_{i,t-1}^l $ + ($ X_{i,t}^l $ – ($ V_{i,t-1}^l $ – Vreset)) * tau // $ X_{i,t}^l $
          是正向传递的输入
     (6)    delta = $ H_{i,t}^l $ – $ V_{i,t-1}^l $
     (7)    $\theta_{i,t}^l $ = p + q exp (–delta / c)
     (8)    if $ H_{i,t}^l $ ≥ $\theta_{i,t}^l $ then
     (9)     $ S_{i,t}^l $ = 1
     (10)     $ V_{i,t}^l $ = Vreset
     (11)    end for
     (12)   end for
     (13) end for
    下载: 导出CSV

    表  1  Prophesee GEN1数据集上的对比实验结果

    方法mAP(0.5:0.95)
    Spiking VGG11+LIF0.127
    Spiking VGG11+DT-LIF0.159
    Spiking DenseNet+LIF0.148
    Spiking DenseNet+DT-LIF0.165
    AsyNet[31]0.140
    下载: 导出CSV
  • [1] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 580–587.
    [2] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904–1916. doi: 10.1109/TPAMI.2015.2389824
    [3] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 779–788.
    [4] LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: Single shot MultiBox detector[C]. The 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 21–37.
    [5] TAN Mingxing and LE Q. EfficientNet: Rethinking model scaling for convolutional neural networks[C]. The 36th International Conference on Machine Learning, Long Beach, USA, 2019: 6105–6114.
    [6] GERSTNER W and KISTLER W M. Spiking Neuron Models: Single Neurons, Populations, Plasticity[M]. Cambridge: Cambridge University Press, 2002: 421–454.
    [7] KIM S, PARK S, NA B, et al. Spiking-YOLO: Spiking neural network for energy-efficient object detection[C]. The 34th AAAI Conference on Artificial Intelligence, New York, USA, 2020: 11270–11277.
    [8] CHAKRABORTY B, SHE Xueyuan, and MUKHOPADHYAY S. A fully spiking hybrid neural network for energy-efficient object detection[J]. IEEE Transactions on Image Processing, 2021, 30: 9014–9029. doi: 10.1109/TIP.2021.3122092
    [9] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2999–3007.
    [10] KUGELE A, PFEIL T, PFEIFFER M, et al. Hybrid SNN-ANN: Energy-efficient classification and object detection for event-based vision[C]. 43rd DAGM German Conference on Pattern Recognition, Bonn, Germany, 2022: 297–312.
    [11] 胡一凡, 李国齐, 吴郁杰, 等. 脉冲神经网络研究进展综述[J]. 控制与决策, 2021, 36(1): 1–26. doi: 10.13195/j.kzyjc.2020.1006

    HU Yifan, LI Guoqi, WU Yujie, et al. Spiking neural networks: A survey on recent advances and new directions[J]. Control and Decision, 2021, 36(1): 1–26. doi: 10.13195/j.kzyjc.2020.1006
    [12] TOYOIZUMI T, PFISTER J P, AIHARA K, et al. Spike-timing dependent plasticity and mutual information maximization for a spiking neuron model[C]. The 17th International Conference on Neural Information Processing Systems, Vancouver, Canada, 2004: 1409–1416.
    [13] HEBB D O. The Organization of Behavior: A Neuropsychological Theory[M]. New York: Psychology Press, 2002.
    [14] KHERADPISHEH S R, GANJTABESH M, THORPE S J, et al. STDP-based spiking deep convolutional neural networks for object recognition[J]. Neural Networks, 2018, 99: 56–67. doi: 10.1016/j.neunet.2017.12.005
    [15] DIEHL P U, NEIL D, BINAS J, et al. Fast-classifying, high-accuracy spiking deep networks through weight and threshold balancing[C]. 2015 International Joint Conference on Neural Networks (IJCNN), Killarney, Ireland, 2015: 1–8.
    [16] NEFTCI E O, MOSTAFA H, and ZENKE F. Surrogate gradient learning in spiking neural networks: Bringing the power of gradient-based optimization to spiking neural networks[J]. IEEE Signal Processing Magazine, 2019, 36(6): 51–63. doi: 10.1109/msp.2019.2931595
    [17] WU Yujie, DENG Lei, LI Guoqi, et al. Spatio-temporal backpropagation for training high-performance spiking neural networks[J]. Frontiers in Neuroscience, 2018, 12: 331. doi: 10.3389/fnins.2018.00331
    [18] ZHENG Hanle, WU Yujie, DENG Lei, et al. Going deeper with directly-trained larger spiking neural networks[C]. The 35th AAAI Conference on Artificial Intelligence, Palo Alto, USA, 2021: 11062–11070.
    [19] FANG Wei, YU Zhaofei, CHEN Yanqi, et al. Incorporating learnable membrane time constant to enhance learning of spiking neural networks[C]. 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 2641–2651.
    [20] GERSTNER W, KISTLER W M, NAUD R, et al. Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition[M]. Cambridge: Cambridge University Press, 2014.
    [21] 贺丰收, 何友, 刘准钆, 等. 卷积神经网络在雷达自动目标识别中的研究进展[J]. 电子与信息学报, 2020, 42(1): 119–131. doi: 10.11999/JEIT180899

    HE Fengshou, HE You, LIU Zhunga, et al. Research and development on applications of convolutional neural networks of radar automatic target recognition[J]. Journal of Electronics &Information Technology, 2020, 42(1): 119–131. doi: 10.11999/JEIT180899
    [22] 董小伟, 韩悦, 张正, 等. 基于多尺度加权特征融合网络的地铁行人目标检测算法[J]. 电子与信息学报, 2021, 43(7): 2113–2120. doi: 10.11999/JEIT200450

    DONG Xiaowei, HAN Yue, ZHANG Zheng, et al. Metro pedestrian detection algorithm based on multi-scale weighted feature fusion network[J]. Journal of Electronics &Information Technology, 2021, 43(7): 2113–2120. doi: 10.11999/JEIT200450
    [23] SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]. 3rd International Conference on Learning Representations, San Diego, USA, 2015.
    [24] AZOUZ R and GRAY C M. Dynamic spike threshold reveals a mechanism for synaptic coincidence detection in cortical neurons in vivo[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(14): 8110–8115. doi: 10.1073/PNAS.130200797
    [25] FONTAINE B, PEÑA J L, and BRETTE R. Spike-threshold adaptation predicted by membrane potential dynamics in vivo[J]. PLoS Computational Biology, 2014, 10(4): e1003560. doi: 10.1371/journal.PCBI.1003560
    [26] XIAO Rong, TANG Huajin, MA Yuhao, et al. An event-driven categorization model for AER image sensors using multispike encoding and learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(9): 3649–3657. doi: 10.1109/tnnls.2019.2945630
    [27] FANG Wei, YU Zhaofei, CHEN Yanqi, et al. Deep residual learning in spiking neural networks[C/OL]. The 34th International Conference on Neural Information Processing Systems, 2021: 21056–21069.
    [28] HUANG Gao, LIU Zhuang, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 2261–2269.
    [29] DE TOURNEMIRE P, NITTI D, PEROT E, et al. A large scale event-based detection dataset for automotive[EB/OL]. https://doi.org/10.48550/arXiv.2001.08499, 2020.
    [30] 张德祥, 王俊, 袁培成. 基于注意力机制的多尺度全场景监控目标检测方法[J]. 电子与信息学报, 2022, 44(9): 3249–3257. doi: 10.11999/JEIT210664

    ZHANG Dexiang, WANG Jun, and YUAN Peicheng. Object detection method for multi-scale full-scene surveillance based on attention mechanism[J]. Journal of Electronics &Information Technology, 2022, 44(9): 3249–3257. doi: 10.11999/JEIT210664
    [31] MESSIKOMMER N, GEHRIG D, LOQUERCIO A, et al. Event-based asynchronous sparse convolutional networks[C]. 16th European Conference on Computer Vision, Glasgow, UK, 2020: 415–431.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  936
  • HTML全文浏览量:  404
  • PDF下载量:  186
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-01
  • 修回日期:  2023-05-11
  • 网络出版日期:  2023-05-20
  • 刊出日期:  2023-08-21

目录

    /

    返回文章
    返回