高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

立体弯折线缆线束电磁耦合分析的时域混合算法

叶志红 鲁唱唱 张玉

叶志红, 鲁唱唱, 张玉. 立体弯折线缆线束电磁耦合分析的时域混合算法[J]. 电子与信息学报, 2023, 45(12): 4345-4351. doi: 10.11999/JEIT221320
引用本文: 叶志红, 鲁唱唱, 张玉. 立体弯折线缆线束电磁耦合分析的时域混合算法[J]. 电子与信息学报, 2023, 45(12): 4345-4351. doi: 10.11999/JEIT221320
YE Zhihong, LU Changchang, ZHANG Yu. Time Domain Hybrid Algorithm for the Coupling Analysis of Harness Cable with Bent and Stereoscopic Configurations[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4345-4351. doi: 10.11999/JEIT221320
Citation: YE Zhihong, LU Changchang, ZHANG Yu. Time Domain Hybrid Algorithm for the Coupling Analysis of Harness Cable with Bent and Stereoscopic Configurations[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4345-4351. doi: 10.11999/JEIT221320

立体弯折线缆线束电磁耦合分析的时域混合算法

doi: 10.11999/JEIT221320
基金项目: 重庆市研究生科研创新项目(CYS21297)
详细信息
    作者简介:

    叶志红:男,副教授,研究方向为电磁安全与智能电磁计算、计算电磁学

    鲁唱唱:女,硕士生,研究方向为电磁兼容

    张玉:女,硕士生,研究方向为电磁兼容

    通讯作者:

    叶志红 yezh@cqupt.edu.cn

  • 中图分类号: TM15

Time Domain Hybrid Algorithm for the Coupling Analysis of Harness Cable with Bent and Stereoscopic Configurations

Funds: The Graduate Scientific Research Innovation Project of Chongqing (CYS21297)
  • 摘要: 受复杂系统布线空间的制约,线缆通常为线束结构,并呈现弯折和空间立体分布形态。目前,针对立体弯折线缆线束(BSCs)的电磁耦合,仍缺乏高效的时域建模分析方法。因此,该文基于时域有限差分(FDTD)方法和传输线(TL)方程,提出自适应线缆网格技术,结合高效插值技术和电荷守恒定律,研究了一种高效的时域混合算法,实现立体弯折线缆线束的电磁耦合时域快速同步计算。首先,将立体弯折线束整体结构按照弯折节点分解成多段独立的子线束。然后,基于传输线方程和FDTD方法,结合自适应线缆网格技术和插值技术,构建各段空间立体分布的子线束电磁耦合模型,并求解得到线束沿线各点的瞬态响应。最后,根据电荷守恒定律,构建弯折节点的等效电路模型并求解得到节点处的电压,实现各段子线束之间的干扰信号传输。通过理想导电板上和屏蔽机箱内立体弯折线束电磁耦合的数值模拟,从计算精度和耗用时间方面与CST和FDTD-SPICE的仿真结果进行对比,验证所提方法的正确性和高效性。
  • 图  1  空间电磁场作用弯折线束的电磁耦合模型

    图  2  弯折线束的自适应网格剖分

    图  3  线束切向电场分量的插值示意图

    图  4  线束垂直方向电场分量的插值示意图

    图  5  弯折节点电压的计算格式

    图  6  理想导电板上弯折线束的电磁耦合模型

    图  7  算例1的负载R2电压响应

    图  8  算例1的负载R10电压响应

    图  9  屏蔽机箱内立体弯折线束的电磁耦合模型

    图  10  算例2的负载R5电压响应

    图  11  算例2的负载R10电压响应

    表  1  算例1的时域混合算法与CST和FDTD-SPICE所需网格量和计算时间

    数值方法网格量计算时间(min)
    时域混合算法6.84×1052.4
    CST2.7×1063.3
    FDTD-SPICE6.84×1052.6
    下载: 导出CSV

    表  2  算例2的时域混合算法和CST所需网格量和计算时间

    数值方法网格量计算时间(min)
    时域混合算法1.77×1064.91
    CST9.088×1069.25
    下载: 导出CSV
  • [1] ANDRIEU G, KONÉ L, BOCQUET F, et al. Multiconductor reduction technique for modeling common-mode currents on cable bundles at high frequency for automotive applications[J]. IEEE Transactions on Electromagnetic Compatibility, 2008, 50(1): 175–184. doi: 10.1109/TEMC.2007.911914
    [2] LI Zhuo, LIU Liangliang, DING Ji, et al. A new simplification scheme for crosstalk prediction of complex cable bundles within a cylindrical cavity[J]. IEEE Transactions on Electromagnetic Compatibility, 2012, 54(4): 940–943. doi: 10.1109/TEMC.2012.2200042
    [3] LI Zhuo, LIU Liangliang, YAN Jian, et al. An efficient simplification scheme for modeling crosstalk of complex cable bundles above an orthogonal ground plane[J]. IEEE Transactions on Electromagnetic Compatibility, 2013, 55(5): 975–978. doi: 10.1109/TEMC.2012.2237033
    [4] 高印寒, 安占扬, 王举贤, 等. 等效线束法在汽车线束时域辐射敏感度分析中的应用[J]. 吉林大学学报:工学版, 2015, 45(3): 946–952. doi: 10.13229/j.cnki.jdxbgxb201503038

    GAO Yinhan, AN Zhanyang, WANG Juxian, et al. Application of equivalent cable bundle method in time domain radiation sensitivity of automotive cable harness[J]. Journal of Jilin University:Engineering and Technology Edition, 2015, 45(3): 946–952. doi: 10.13229/j.cnki.jdxbgxb201503038
    [5] XIE Li and LEI Yinzhao. Transient response of a multiconductor transmission line with nonlinear terminations excited by an electric dipole[J]. IEEE Transactions on Electromagnetic Compatibility, 2009, 51(3): 805–810. doi: 10.1109/TEMC.2009.2023327
    [6] 尹名初, 杜平安. 开孔屏蔽腔内传输线负载所受电磁干扰的解析算法[J]. 强激光与粒子束, 2016, 28(12): 123201. doi: 10.11884/HPLPB201628.160421

    YIN Mingchu and DU Ping’an. Analytic formulation for load response of transmission line enclosed in enclosure with apertures[J]. High Power Laser and Particle Beams, 2016, 28(12): 123201. doi: 10.11884/HPLPB201628.160421
    [7] 任丹, 杜平安, 陈珂, 等. 基于模式匹配及BLT方程的腔体内场线耦合计算方法研究[J]. 电子与信息学报, 2017, 39(8): 2014–2018. doi: 10.11999/JEIT161101

    REN Da, DU Ping’an, CHEN Ke, et al. Analytic method based on mode matching and BLT equation for field to wire coupling in an enclosure[J]. Journal of Electronics &Information Technology, 2017, 39(8): 2014–2018. doi: 10.11999/JEIT161101
    [8] 王怡, 张馨丹, 甄琦, 等. 平面波照射下贯通导线电磁干扰快速算法[J]. 电波科学学报, 2019, 34(4): 429–435. doi: 10.13443/j.cjors.2018111902

    WANG Yi, ZHANG Xindan, ZHEN Qi, et al. Fast algorithm of plane wave coupling to transmission lines penetrating through metallic enclosure[J]. Chinese Journal of Radio Science, 2019, 34(4): 429–435. doi: 10.13443/j.cjors.2018111902
    [9] 李春荣, 李帅, 王新政, 等. 电磁脉冲与微带线耦合效应的数值模拟[J]. 微波学报, 2013, 29(2): 66–70. doi: 10.14183/j.cnki.1005-6122.2013.02.020

    LI Chunrong, LI Shuai, WANG Xinzheng, et al. Numerical simulation on coupling effects of electromagnetic pulse onto microstrip line[J]. Journal of Microwave, 2013, 29(2): 66–70. doi: 10.14183/j.cnki.1005-6122.2013.02.020
    [10] 谢海燕, 李勇, 宣春, 等. 不同频率高功率微波辐照下PCB电路的混合模拟[J]. 强激光与粒子束, 2016, 28(3): 033016. doi: 10.11884/HPLPB201628.033016

    XIE Haiyan, LI Yong, XUAN Chun, et al. Mixed simulation of PCB circuit illuminated by high power microwave with different frequencies[J]. High Power Laser and Particle Beams, 2016, 28(3): 033016. doi: 10.11884/HPLPB201628.033016
    [11] CHEN Hongcai, DU Yaping, YUAN Mengqing, et al. Lightning-induced voltages on a distribution line with surge arresters using a hybrid FDTD-SPICE method[J]. IEEE Transactions on Power Delivery, 2018, 33(5): 2354–2363. doi: 10.1109/TPWRD.2017.2788046
    [12] 叶志红, 苟丹, 吴小林, 等. 传输线端接复杂电路的电磁耦合时域分析方法[J]. 电子与信息学报, 2021, 43(1): 242–248. doi: 10.11999/JEIT191026

    YE Zhihong, GOU Dan, WU Xiaolin, et al. Time domain analysis method for the coupling problem of transmission lines terminated with complex circuits[J]. Journal of Electronics &Information Technology, 2021, 43(1): 242–248. doi: 10.11999/JEIT191026
    [13] WEI Jinhong, YAN Youjie, WANG Shengtao, et al. FDTD-TL method for the prediction of the transient response of shielded cable above the ground[C]. 2021 International Applied Computational Electromagnetics Society (ACES-China) Symposium, Chengdu, China, 2021: 1–2.
    [14] 许杰, 徐珂, 黄志祥. 一种新型的高阶时域有限差分方法[J]. 电子与信息学报, 2020, 42(2): 425–429. doi: 10.11999/JEIT190050

    XU Jie, XU Ke, and HUANG Zhixiang. A new high order finite difference time domain method[J]. Journal of Electronics &Information Technology, 2020, 42(2): 425–429. doi: 10.11999/JEIT190050
    [15] YE Zhihong, WU Xiaolin, and ZHANG Jie. Time domain hybrid method for the coupling analysis of oblique transmission line network excited by ambient wave[J]. IEEE Transactions on Electromagnetic Compatibility, 2020, 62(6): 2450–2457. doi: 10.1109/TEMC.2020.2982430
    [16] MENG Xuesong, BAO Xianfeng, ZHENG Yuteng, et al. An efficient modeling technique for time domain field-to-wire coupling in the massively parallel computer codes JEMS-FDTD[C]. 2019 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Guangzhou, China, 2019: 1–3.
    [17] MENG Xuesong, BAO Xianfeng, ZHENG Yuteng, et al. Time-domain modeling of field-to-wire coupling in obliquely oriented multiwire cables with junctions using JEMS-FDTD[J]. IEEE Transactions on Electromagnetic Compatibility, 2020, 62(6): 2458–2467. doi: 10.1109/TEMC.2020.2968076
    [18] ROTGERINK J L, SERRA R, and LEFERINK F. Multiconductor transmission line modeling of crosstalk between cables in the presence of composite ground planes[J]. IEEE Transactions on Electromagnetic Compatibility, 2021, 63(4): 1231–1239. doi: 10.1109/TEMC.2020.3040689
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  209
  • HTML全文浏览量:  113
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-20
  • 修回日期:  2023-03-13
  • 网络出版日期:  2023-03-20
  • 刊出日期:  2023-12-26

目录

    /

    返回文章
    返回