高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光电镊—一种用途广泛的微纳操作工具

张帅龙 李恭 李凤刚 徐冰睿 李航 符荣鑫

张帅龙, 李恭, 李凤刚, 徐冰睿, 李航, 符荣鑫. 光电镊—一种用途广泛的微纳操作工具[J]. 电子与信息学报, 2023, 45(12): 4566-4575. doi: 10.11999/JEIT221315
引用本文: 张帅龙, 李恭, 李凤刚, 徐冰睿, 李航, 符荣鑫. 光电镊—一种用途广泛的微纳操作工具[J]. 电子与信息学报, 2023, 45(12): 4566-4575. doi: 10.11999/JEIT221315
ZHANG Shuailong, LI Gong, LI Fenggang, XU Bingrui, LI Hang, FU Rongxin. Optoelectronic Tweezers — A Versatile Micro/Nano Operation Technique[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4566-4575. doi: 10.11999/JEIT221315
Citation: ZHANG Shuailong, LI Gong, LI Fenggang, XU Bingrui, LI Hang, FU Rongxin. Optoelectronic Tweezers — A Versatile Micro/Nano Operation Technique[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4566-4575. doi: 10.11999/JEIT221315

光电镊—一种用途广泛的微纳操作工具

doi: 10.11999/JEIT221315
基金项目: 国家自然科学基金(62103050, 62105177, 21904008),国家海外高层次人才计划青年项目
详细信息
    作者简介:

    张帅龙:男,博士,教授,博士生导师,主要研究方向为生物微纳操作系统、光电镊技术、数字微流控技术、生物检测

    李恭:男,硕士生,研究方向为基于光电镊技术的微操控

    李凤刚:男,博士生,主要研究方向为基于光电镊技术的微操控及数字微流控

    徐冰睿:女,博士生,主要研究方向为光操控技术与微生物行为学

    李航:女,博士,副研究员,硕士生导师,主要研究方向为质谱分析与蛋白质组学

    符荣鑫:男,博士,副研究员,硕士生导师,主要研究方向为光谱计算与微流控生物传感器

    通讯作者:

    符荣鑫 furongxin@bit.edu.cn

  • 中图分类号: TP212; O436

Optoelectronic Tweezers — A Versatile Micro/Nano Operation Technique

Funds: The National Natural Science Foundation of China (62103050, 62105177, 21904008), The Recruitment Program of Global Experts and National Special Support Plan for High-level Talents
  • 摘要: 光电镊(OET)是一种基于光致介电泳效应的微尺度光操控技术,可在流体场、光电场、生物力场耦合的复杂环境下对微小目标进行精准操控,在细胞操作、微机械系统等领域有着重要的应用。光电镊技术可以单独使用或与其他技术协同使用,应用十分广泛。迄今为止,基于光电镊的研究主要集中在:微纳米材料的操作、组装和合成;单个细胞/分子的操作、分离和分析;细胞固有特性的分析和获取;细胞的电穿孔、融合和裂解;细胞封装生物材料和生物结构的制备;流体传输的光流体器件的开发。这些工作展示了光电镊技术优越的性能和独特的通用性和灵活性。该文系统地介绍了光电镊技术的现有应用,总结了该技术的应用前景、局限性及发展趋势。
  • 图  1  3种光电镊设备[10]

    图  2  使用微生物运输微小物体[11]

    图  3  光诱导单细胞电穿孔[12]

    图  4  细胞在接收点进行光诱导细胞融合[13]

    图  5  细胞基于光电镊的1阶响应[14]

    图  6  利用收缩光圈富集细胞外囊泡[15]

    图  7  光电镊结合数字微流控技术[16]

    图  8  Beacon光电镊平台[17]

    图  9  基于光电镊技术印制微电路[19]

    图  10  可进行并行操作的光电镊微机器人[20]

    图  11  光电镊驱动微齿轮组实现物体的3维运输[21]

  • [1] LI Jinxing, DE ÁVILA B E F, GAO Wei, et al. Micro/nanorobots for biomedicine: Delivery, surgery, sensing, and detoxification[J]. Science Robotics, 2017, 2(4): eaam6431. doi: 10.1126/scirobotics.aam6431
    [2] ZHANG Yong, CHEN B K, LIU Xinyu, et al. Autonomous robotic pick-and-place of microobjects[J]. IEEE Transactions on Robotics, 2009, 26(1): 200–207. doi: 10.1109/TRO.2009.2034831
    [3] ZHU Wei, LI Jinxing, LEONG Y J, et al. 3D-printed artificial microfish[J]. Advanced Materials, 2015, 27(30): 4411–4417. doi: 10.1002/adma.201501372
    [4] XU Xiaobin, LIU Chao, KIM K, et al. Electric-driven rotation of silicon nanowires and silicon nanowire motors[J]. Advanced Functional Materials, 2014, 24(30): 4843–4850. doi: 10.1002/adfm.201303505
    [5] XIE Hui, SUN Mengmeng, FAN Xinjian, et al. Reconfigurable magnetic microrobot swarm: Multimode transformation, locomotion, and manipulation[J]. Science Robotics, 2019, 4(28): eaav8006. doi: 10.1126/scirobotics.aav8006
    [6] WANG Wei, LI Sixing, MAIR L, et al. Acoustic propulsion of nanorod motors inside living cells[J]. Angewandte Chemie International Edition, 2014, 53(12): 3201–3204. doi: 10.1002/anie.201309629
    [7] PALIMA D and GLÜCKSTAD J. Gearing up for optical microrobotics: Micromanipulation and actuation of synthetic microstructures by optical forces[J]. Laser & Photonics Reviews, 2013, 7(4): 478–494. doi: 10.1002/lpor.201200030
    [8] ASHKIN A and DZIEDZIC J M. Optical trapping and manipulation of viruses and bacteria[J]. Science, 1987, 235(4795): 1517–1520. doi: 10.1126/science.3547653
    [9] WU M C. Optoelectronic tweezers[J]. Nature Photonics, 2011, 5(6): 322–324. doi: 10.1038/nphoton.2011.98
    [10] VALLEY J K, OHTA A T, HSAN-YIN H, et al. Optoelectronic tweezers as a tool for parallel single-cell manipulation and stimulation[J]. IEEE Transactions on Biomedical Circuits and Systems, 2009, 3(6): 424–431. doi: 10.1109/TBCAS.2009.2031329
    [11] LIANG Shuzhang, GAN Chunyuan, DAI Yuguo, et al. Interaction between positive and negative dielectric microparticles/microorganism in optoelectronic tweezers[J]. Lab on A Chip, 2021, 21(22): 4379–4389. doi: 10.1039/D1LC00610J
    [12] VALLEY J K, NEALE S, HSU H Y, et al. Parallel single-cell light-induced electroporation and dielectrophoretic manipulation[J]. Lab on A Chip, 2009, 9(12): 1714–1720. doi: 10.1039/b821678a
    [13] HSIAO Y C, WANG C H, LEE W B, et al. Automatic cell fusion via optically-induced dielectrophoresis and optically-induced locally-enhanced electric field on a microfluidic chip[J]. Biomicrofluidics, 2018, 12(3): 034108. doi: 10.1063/1.5028158
    [14] ZHAO Yuliang, LIANG Wenfeng, ZHANG Guanglie, et al. Distinguishing cells by their first-order transient motion response under an optically induced dielectrophoretic force field[J]. Applied Physics Letters, 2013, 103(18): 183702. doi: 10.1063/1.4827300
    [15] CHEN Y S, LAI C P K, CHEN C, et al. Isolation and recovery of extracellular vesicles using optically-induced dielectrophoresis on an integrated microfluidic platform[J]. Lab on A Chip, 2021, 21(8): 1475–1483. doi: 10.1039/D1LC00093D
    [16] PEI Shaoning, VALLEY J K, WANG Yilun, et al. Distributed circuit model for multi-color light-actuated opto-electrowetting microfluidic device[J]. Journal of Lightwave Technology, 2015, 33(16): 3486–3493. doi: 10.1109/JLT.2015.2405076
    [17] Berkeley Lights[EB/OL]. https://www.berkeleylights.com/systems/beacon/, 2022.
    [18] CHO H, GONZALES-WARTZ K K, HUANG Deli, et al. Bispecific antibodies targeting distinct regions of the spike protein potently neutralize SARS-CoV-2 variants of concern[J]. Science Translational Medicine, 2021, 13(616): eabj5413. doi: 10.1126/scitranslmed.abj5413
    [19] ZHANG Shuailong, LI Weizhen, ELSAYED M, et al. Integrated assembly and photopreservation of topographical micropatterns[J]. Small, 2021, 17(37): 2103702. doi: 10.1002/smll.202103702
    [20] ZHANG Shuailong, SCOTT E Y, SINGH J, et al. The optoelectronic microrobot: A versatile toolbox for micromanipulation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(30): 14823–14828. doi: 10.1073/pnas.1903406116
    [21] ZHANG Shuailong, ELSAYED M, PENG Ran, et al. Reconfigurable multi-component micromachines driven by optoelectronic tweezers[J]. Nature Communications, 2021, 12: 5349. doi: 10.1038/s41467-021-25582-8
  • 加载中
图(11)
计量
  • 文章访问数:  589
  • HTML全文浏览量:  480
  • PDF下载量:  146
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-19
  • 修回日期:  2023-01-16
  • 网络出版日期:  2023-02-22
  • 刊出日期:  2023-12-26

目录

    /

    返回文章
    返回