高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

变时间尺度城轨客流的本征模量分解及组合深度学习预测

朱广宇 孙歆霓 杨荣正 刘康琳 魏运 吴波

刘宗香, 谢维信, 黄敬雄. 一种用于三维空间杂波环境机动目标跟踪的数据互联方法[J]. 电子与信息学报, 2009, 31(4): 848-852. doi: 10.3724/SP.J.1146.2007.01880
引用本文: 朱广宇, 孙歆霓, 杨荣正, 刘康琳, 魏运, 吴波. 变时间尺度城轨客流的本征模量分解及组合深度学习预测[J]. 电子与信息学报, 2023, 45(12): 4421-4430. doi: 10.11999/JEIT221300
Liu Zong-xiang, Xie Wei-xin, Huang Jing-xiong. A Data Association Method for Maneuvering Target Tracking in Three-Dimensional Space under the Circumstance of Clutter[J]. Journal of Electronics & Information Technology, 2009, 31(4): 848-852. doi: 10.3724/SP.J.1146.2007.01880
Citation: ZHU Guangyu, SUN Xinni, YANG Rongzheng, LIU Kanglin, WEI Yun, WU Bo. Intrinsic Mode Decomposition and Combined Deep Learning Prediction of Urban Rail Transit Passenger Flow at Variable Time Scales[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4421-4430. doi: 10.11999/JEIT221300

变时间尺度城轨客流的本征模量分解及组合深度学习预测

doi: 10.11999/JEIT221300
基金项目: 基本科研业务费(2022JBZX024),国家自然科学基金(62272036, 62173167, 62132003)
详细信息
    作者简介:

    朱广宇:男,教授,博士生导师,研究方向为交通运输智能自动化

    孙歆霓:女,硕士生,研究方向为城市轨道交通客流分析与预测

    杨荣正:男,硕士生,研究方向为城市轨道交通知识工程与知识图谱

    刘康琳:女,讲师,研究方向为应急物流与优化调度

    魏运:男,教授级高级工程师,研究方向为智能交通系统和模式识别

    吴波:男,高级工程师,研究方向为城市轨道交通安全管理及设施设备故障预测等

    通讯作者:

    朱广宇 gyzhu@bjtu.edu.cn

  • 中图分类号: TP391.1

Intrinsic Mode Decomposition and Combined Deep Learning Prediction of Urban Rail Transit Passenger Flow at Variable Time Scales

Funds: The Fundamental Research Funds for the Central Universities(2022JBZX024), The National Natural Science Foundation of China (62272036, 62173167, 62132003)
  • 摘要: 城市轨道交通的不同运营状态,通常对应着客流时间序列中不同的本征模态分量(IMF)及时间尺度特征。基于自适应噪声的完全总体经验模态分解(CEEMDAN)算法和双向长短期记忆(BiLSTM)网络,该文构建了地铁短时客流时间序列的组合深度学习预测模型。具体包括:基于CEEMDAN算法实现了客流时间序列的模态分解。分别使用样本熵和层次聚类对IMF分量进行复杂性和相似度分析,并在此基础上完成IMF分量的分类合并与重构;使用Optuna框架中的树形Parzen优化器(TPE)对模型的超参数进行优化,构建CEEMDAN-TPE-BiLSTM组合预测模型。采用实际数据对该文模型进行验证,结果表明,对于特定特征的客流时间序列数据,该文模型的精确性、有效性指标均达到最优。
  • 图  1  BiLSTM结构图

    图  2  建模及实验流程图

    图  3  进站客流序列CEEMDAN分解结果

    图  4  IMF分量聚类结果

    图  5  IMF分量重构结果

    图  6  模型预测效果对比

    图  7  高峰时段划分图像

    表  1  IMF分量样本熵计算结果

    IMF1IMF2IMF3IMF4IMF5IMF6IMF7IMF8IMF9IMF10IMF11
    工作日0.9540.8940.7890.4830.5240.3000.2960.0760.0380.0050.001
    非工作日0.8120.9831.1780.5440.5140.2820.2400.1020.002
    下载: 导出CSV

    表  2  待优化超参数搜索空间范围

    神经元个数批大小迭代次数学习率
    搜索空间范围(16, 64)(16, 64)(30, 70)(0.0001, 0.01)
    步长2450.0001
    下载: 导出CSV

    表  3  优化后各模型的超参数

    模型IMF隐藏层神经元个数批大小迭代次数学习率
    工作日BiLSTM模型2640650.0072
    CEEMDAN-BiLSTM
    模型
    IMF16024650.0084
    IMF26036650.0034
    IMF34216600.0090
    IMF46028650.0066
    IMF55020550.0041
    IMF66220600.0054
    非工作日BiLSTM模型3852650.0078
    CEEMDAN-BiLSTM
    模型
    IMF16220700.0080
    IMF23616600.0023
    IMF34224500.0062
    IMF45424700.0082
    IMF55816400.0092
    IMF64016500.0065
    下载: 导出CSV

    表  4  模型预测性能评价指标

    模型工作日非工作日
    RMSEMAEMAPE(%)R2RMSEMAEMAPE(%)R2
    BiLSTM137.46792.48621.0940.914147.00194.82822.8380.956
    TPE-BiLSTM121.86877.68019.0040.933140.19390.24819.3520.960
    CEEMDAN-BiLSTM70.94551.25814.6270.977104.18675.91922.5730.978
    CEEMDAN-TPE-BiLSTM57.73036.98112.0710.98580.57552.58716.3000.987
    下载: 导出CSV

    表  5  高峰状态下模型预测性能评价指标

    模型工作日非工作日
    RMSEMAEMAPE(%)R2RMSEMAEMAPE(%)R2
    BiLSTM194.380170.48011.823–1.601229.810175.0168.749–2.047
    TPE-BiLSTM138.215106.6267.296–0.315222.178167.0078.411–1.848
    CEEMDAN-BiLSTM115.999107.4357.5610.074171.194154.4377.916–0.691
    CEEMDAN-TPE-BiLSTM73.46657.7714.0190.628117.462108.4065.5390.204
    下载: 导出CSV
  • [1] CHEN Enhui, YE Zhirui, WANG Chao, et al. Subway passenger flow prediction for special events using smart card data[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(3): 1109–1120. doi: 10.1109/TITS.2019.2902405
    [2] RYU U, WANG Jian, KIM T, et al. Construction of traffic state vector using mutual information for short-term traffic flow prediction[J]. Transportation Research Part C:Emerging Technologies, 2018, 96: 55–71. doi: 10.1016/j.trc.2018.09.015
    [3] LIANG Shidong, MA Minghui, HE Shengxue, et al. Short-term passenger flow prediction in urban public transport: Kalman filtering combined k-Nearest Neighbor approach[J]. IEEE Access, 2019, 7: 120937–120949. doi: 10.1109/ACCESS.2019.2937114
    [4] WANG Xuemei, ZHANG Ning, ZHANG Yunlong, et al. Forecasting of short-term metro ridership with Support Vector Machine online model[J]. Journal of Advanced Transportation, 2018, 2018: 3189238. doi: 10.1155/2018/3189238
    [5] 陈忠辉, 凌献尧, 冯心欣, 等. 基于模糊C均值聚类和随机森林的短时交通状态预测方法[J]. 电子与信息学报, 2018, 40(8): 1879–1886. doi: 10.11999/JEIT171090

    CHEN Zhonghui, LING Xianyao, FENG Xinxin, et al. Short-term traffic state prediction approach based on FCM and random forest[J]. Journal of Electronics &Information Technology, 2018, 40(8): 1879–1886. doi: 10.11999/JEIT171090
    [6] SUN Bo, SUN Tuo, and JIAO Pengpeng. Spatio-temporal segmented traffic flow prediction with ANPRS data based on improved XGBoost[J]. Journal of Advanced Transportation, 2021, 2021: 5559562. doi: 10.1155/2021/5559562
    [7] YANG Dan, CHEN Kairun, YANG Mengning, et al. Urban rail transit passenger flow forecast based on LSTM with enhanced long-term features[J]. IET Intelligent Transport Systems, 2019, 13(10): 1475–1482. doi: 10.1049/iet-its.2018.5511
    [8] 代亮, 梅洋, 钱超, 等. 基于生成对抗网络的大规模路网交通流预测算法[J]. 控制与决策, 2021, 36(12): 2937–2945. doi: 10.13195/j.kzyjc.2020.0333

    DAI Liang, MEI Yang, QIAN Chao, et al. Traffic flow forecasting algorithm for large-scale road network based on GAN[J]. Control and Decision, 2021, 36(12): 2937–2945. doi: 10.13195/j.kzyjc.2020.0333
    [9] 秦超, 高晓光, 万开方. 深度卷积记忆网络时空数据模型[J]. 自动化学报, 2020, 46(3): 451–462. doi: 10.16383/j.aas.c180788

    QIN Chao, GAO Xiaoguang, and WAN Kaifang. Deep spatio-temporal convolutional long-short memory network[J]. Acta Automatica Sinica, 2020, 46(3): 451–462. doi: 10.16383/j.aas.c180788
    [10] 曾诚, 吴佳媛, 罗霞. 城市轨道交通短时客流预测文献综述[J]. 铁道运输与经济, 2021, 43(8): 105–111,125. doi: 10.16668/j.cnki.issn.1003-1421.2021.08.17

    ZENG Cheng, WU Jiayuan, and LUO Xia. Literature review of short-term passenger flow forecast for urban rail transit[J]. Railway Transport and Economy, 2021, 43(8): 105–111,125. doi: 10.16668/j.cnki.issn.1003-1421.2021.08.17
    [11] 殷礼胜, 唐圣期, 李胜, 等. 基于整合移动平均自回归和遗传粒子群优化小波神经网络组合模型的交通流预测[J]. 电子与信息学报, 2019, 41(9): 2273–2279. doi: 10.11999/JEIT181073

    YIN Lisheng, TANG Shengqi, LI Sheng, et al. Traffic flow prediction based on hybrid model of auto-regressive integrated moving average and genetic particle swarm optimization wavelet neural network[J]. Journal of Electronics &Information Technology, 2019, 41(9): 2273–2279. doi: 10.11999/JEIT181073
    [12] ZHANG Lizong, ALHARBE N R, LUO Guangchun, et al. A hybrid forecasting framework based on support vector regression with a modified genetic algorithm and a random forest for traffic flow prediction[J]. Tsinghua Science and Technology, 2018, 23(4): 479–492. doi: 10.26599/tst.2018.9010045
    [13] 寇唯. 基于数据稳定化处理的城市轨道交通短时客流预测研究[D]. [硕士论文], 北京交通大学, 2020.

    KOU Wei. Research on short-term passenger flow prediction of urban rail transit based on data stability processing[D]. [Master dissertation], Beijing Jiaotong University, 2020.
    [14] ZHANG Shuaichao, ZHOU Lingxiao, CHEN Xiqun, et al. Network-wide traffic speed forecasting: 3D convolutional neural network with ensemble empirical mode decomposition[J]. Computer-Aided Civil and Infrastructure Engineering, 2020, 35(10): 1132–1147. doi: 10.1111/mice.12575
    [15] WANG Jiaxuan, WANG Rui, and ZENG Xin. Short-term passenger flow forecasting using CEEMDAN meshed CNN-LSTM-attention model under wireless sensor network[J]. IET Communications, 2022, 16(10): 1253–1263. doi: 10.1049/cmu2.12350
    [16] 沈琼. 城市轨道交通进站客流短时预测方法研究[D]. [硕士论文], 北京交通大学, 2019.

    SHEN Qiong. Study on short-term forecasting method for boarding passenger flows in urban rail transit[D]. [Master dissertation], Beijing Jiaotong University, 2019.
    [17] AKIBA T, SANO S, YANASE T, et al. Optuna: A next-generation hyperparameter optimization framework[C]. The 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, USA, 2019: 2623–2631.
    [18] LACERDA P, BARROS B, ALBUQUERQUE C, et al. Hyperparameter optimization for COVID-19 pneumonia diagnosis based on chest CT[J]. Sensors, 2021, 21(6): 2174. doi: 10.3390/S21062174
    [19] 黄宇, 高珊, 李其贤, 等. SCR脱硝系统的分数阶 PIλDμ参数优化控制[J]. 动力工程学报, 2022, 42(2): 122–128. doi: 10.19805/j.cnki.jcspe.2022.02.004

    HUANG Yu, GAO Shan, LI Qixian, et al. Optimal control of fractional PIλDμ parameters of SCR denitration system[J]. Journal of Chinese Society of Power Engineering, 2022, 42(2): 122–128. doi: 10.19805/j.cnki.jcspe.2022.02.004
    [20] 石庄彬, 张宁, 邵星杰. 城市轨道交通客流高峰持续时间预测方法[J]. 城市轨道交通研究, 2016, 19(7): 35–39. doi: 10.16037/j.1007-869x.2016.07.008

    SHI Zhuangbin, ZHANG Ning, and SHAO Xingjie. Prediction of passenger flow duration in urban rail transit peak hours[J]. Urban Mass Transit, 2016, 19(7): 35–39. doi: 10.16037/j.1007-869x.2016.07.008
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  556
  • HTML全文浏览量:  343
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-14
  • 修回日期:  2023-02-22
  • 网络出版日期:  2023-03-13
  • 刊出日期:  2023-12-26

目录

    /

    返回文章
    返回