高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于二次特征提取和BiLSTM-Attention的网络流量异常检测方法

潘成胜 李志祥 杨雯升 蔡凌云 金爱鑫

潘成胜, 李志祥, 杨雯升, 蔡凌云, 金爱鑫. 基于二次特征提取和BiLSTM-Attention的网络流量异常检测方法[J]. 电子与信息学报, 2023, 45(12): 4539-4547. doi: 10.11999/JEIT221296
引用本文: 潘成胜, 李志祥, 杨雯升, 蔡凌云, 金爱鑫. 基于二次特征提取和BiLSTM-Attention的网络流量异常检测方法[J]. 电子与信息学报, 2023, 45(12): 4539-4547. doi: 10.11999/JEIT221296
PAN Chengsheng, LI Zhixiang, YANG Wensheng, CAI Lingyun, JIN Aixin. Anomaly Detection Method of Network Traffic Based on Secondary Feature Extraction and BiLSTM-Attention[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4539-4547. doi: 10.11999/JEIT221296
Citation: PAN Chengsheng, LI Zhixiang, YANG Wensheng, CAI Lingyun, JIN Aixin. Anomaly Detection Method of Network Traffic Based on Secondary Feature Extraction and BiLSTM-Attention[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4539-4547. doi: 10.11999/JEIT221296

基于二次特征提取和BiLSTM-Attention的网络流量异常检测方法

doi: 10.11999/JEIT221296
基金项目: 国家自然科学基金(61931004),江苏省双创团队
详细信息
    作者简介:

    潘成胜:男,教授,博士生导师,研究方向为网络流量理论

    李志祥:男,硕士生,研究方向为网络流量异常检测

    杨雯升:男,博士生,研究方向为网络流量数据分析

    蔡凌云:男,硕士生,研究方向为数据压缩

    金爱鑫:男,硕士生,研究方向为网络故障检测

    通讯作者:

    潘成胜 003150@nuist.edu.cn

  • 中图分类号: TN915.08; TP393

Anomaly Detection Method of Network Traffic Based on Secondary Feature Extraction and BiLSTM-Attention

Funds: The National Natural Science Foundation of China (61931004), Jiangsu Innovation & Entrepreneurship Group Talents Plan
  • 摘要: 针对传统的网络流量异常检测方法存在识别准确度低、表征能力弱、泛化能力差,忽略了特征之间的相互关系等问题,该文提出一种基于二次特征提取和BiLSTM-Attention的网络流量异常检测方法。通过使用双向长短期记忆网络(BiLSTM)学习数据之间的特征关系,完成数据的一次特征提取,在此基础上,定义一种基于注意力机制的特征重要性权重评估规则,依据特征重要性大小对BiLSTM生成的特征向量给予相应的权重,完成数据的二次特征提取。最后,提出一种“先总分后细分”的设计思想构建网络流量异常检测模型,实现多分类网络流量的异常检测。实验结果表明,该文所提方法在性能上要优于传统单一的模型,并且具有良好的表征能力和泛化能力。
  • 图  1  BiLSTM结构

    图  2  模型流程图

    图  3  面向不均衡数据的网络流量异常检测框架图

    图  4  多分类场景不同模型检测性能

    图  5  精确率指标上的比较

    图  6  召回率指标上的比较

    图  7  F1值指标上的比较

    图  8  开销时间的比较

    表  1  混淆矩阵

    混淆矩阵预测值
    正常异常
    实际值正常TPFN
    异常FPTN
    下载: 导出CSV

    表  2  CICIDS2017数据集

    数据流类型数量占比(%)
    Benign342 46561.15
    Dos GlodenEye7 3201.31
    Dos Hulk14 5752.60
    Dos Slowhttp4 2300.76
    Dos Slowloris3 9150.70
    SSH Patator2 2700.41
    FTP Patator3 8950.70
    Web Attack2 0400.36
    BotNet1 0200.18
    Port Scan162 42529.00
    DDoS15 8452.83
    下载: 导出CSV

    表  3  注意力机制对实验结果(%)的影响

    有无注意力机制准确度精确率召回率
    99.8899.9399.83
    98.5398.4398.62
    下载: 导出CSV

    表  4  不同子数据集在准确度、精确率、召回率和F1 值指标上的比较(%)

    数据集准确度精确率召回率F1值
    LSTM本文模型LSTM本文模型LSTM本文模型LSTM本文模型
    P175.9699.5873.6899.7775.5499.1574.6299.46
    P273.1899.6573.1899.8774.2398.8374.1299.34
    P376.2399.6976.1699.2176.7299.6875.8299.45
    P478.4299.4568.3499.1370.3998.5369.0398.83
    P574.7399.3756.3199.4359.7399.3558.2899.39
    P670.2599.3565.2999.6268.6298.3667.1998.99
    均值74.8099.5268.8399.5170.8798.9869.8499.24
    下载: 导出CSV
  • [1] 康潆允, 孟凡宇, 冯永新. 一种面向军事物联网的网络流量异常检测模型[J]. 火力与指挥控制, 2021, 46(2): 120–125,132. doi: 10.3969/j.issn.1002-0640.2021.02.021

    KANG Yingyun, MENG Fanyu, and FENG Yongxin. A network traffic anomaly detection model for military internet of things[J]. Fire Control &Command Control, 2021, 46(2): 120–125,132. doi: 10.3969/j.issn.1002-0640.2021.02.021
    [2] 王馨彤, 王璇, 孙知信. 基于多尺度记忆残差网络的网络流量异常检测模型[J]. 计算机科学, 2022, 49(8): 314–322. doi: 10.11896/jsjkx.220200011

    WANG Xintong, WANG Xuan, and SUN Zhixin. Network traffic anomaly detection method based on multi-scale memory residual network[J]. Computer Science, 2022, 49(8): 314–322. doi: 10.11896/jsjkx.220200011
    [3] WESTER P, HEIDING F and LAGERSTROM R. Anomaly-based intrusion detection using tree augmented naive Bayes[C]. 2021 IEEE 25th International Enterprise Distributed Object Computing Workshop (EDOCW), Gold Coast, Australia, 2021: 112–121.
    [4] HUANG Meigen and CAI Yunqiang. A DDoS attack detection method based on time series and random forest in SDN[C]. 2021 International Conference on Intelligent Computing, Automation and Systems (ICICAS), Chongqing, China, 2021: 323–327.
    [5] EL-SAYED R, EL-GHAMRY A, GABER T, et al. Zero-day malware classification using deep features with support vector machines[C]. 2021 Tenth International Conference on Intelligent Computing and Information Systems (ICICIS), Cairo, Egypt, 2021: 311–317.
    [6] KACHAVIMATH A V, NAZARE S V, and AKKI S S. Distributed denial of Service attack detection using naive Bayes and k-nearest neighbor for network forensics[C]. 2020 2nd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA), Bangalore, India, 2020: 711–717.
    [7] NGUYEN T T T and ARMITAGE G. A survey of techniques for internet traffic classification using machine learning[J]. IEEE Communications Surveys & Tutorials, 2008, 10(4): 56–76. doi: 10.1109/SURV.2008.080406
    [8] 杭梦鑫, 陈伟, 张仁杰. 基于改进的一维卷积神经网络的异常流量检测[J]. 计算机应用, 2021, 41(2): 433–440. doi: 10.11772/j.issn.1001-9081.2020050734

    HANG Mengxin, CHEN Wei, and ZHANG Renjie. Abnormal flow detection based on improved one-dimensional convolutional neural network[J]. Journal of Computer Applications, 2021, 41(2): 433–440. doi: 10.11772/j.issn.1001-9081.2020050734
    [9] YIN Chuanlong, ZHU Yuefei, FEI Jinlong, et al. A deep learning approach for intrusion detection using recurrent neural networks[J]. IEEE Access, 2017, 5: 21954–21961. doi: 10.1109/ACCESS.2017.2762418
    [10] PEI Jiaming, ZHONG Kaiyang, JAN M A, et al. Personalized federated learning framework for network traffic anomaly detection[J]. Computer Networks, 2022, 209: 108906. doi: 10.1016/j.comnet.2022.108906
    [11] FOTIADOU K, VELIVASSAKI T H, VOULKIDIS A, et al. Network traffic anomaly detection via deep learning[J]. Information, 2021, 12(5): 215. doi: 10.3390/info12050215
    [12] 皇甫雨婷, 李丽颖, 王海洲, 等. 自注意力的多特征网络流量异常检测与分类[J]. 华东师范大学学报:自然科学版, 2021(6): 161–173. doi: 10.3969/j.issn.1000-5641.2021.06.016

    HUANGFU Yuting, LI Liying, WANG Haizhou, et al. Multi-feature network traffic anomaly detection and classification based on self-attention[J]. Journal of East China Normal University:Natural Science, 2021(6): 161–173. doi: 10.3969/j.issn.1000-5641.2021.06.016
    [13] DING Defeng, ZHU Lu, XIE Jiaying, et al. In-vehicle network intrusion detection system based on Bi-LSTM[C]. 2022 7th International Conference on Intelligent Computing and Signal Processing (ICSP), Xi’an, China, 2022: 580–583.
    [14] ZHANG Xin, CHEN Zhuang, and WEI Qingjie. Research and application of facial expression recognition based on attention mechanism[C]. 2021 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC), Dalian, China, 2021: 282–285.
    [15] ANDERSON J P. Computer security threat monitoring and surveillance[R]. Washington: James P. Anderson Company, 1980.
    [16] THAKKAR V, TEWARY S, and CHAKRABORTY C. Batch normalization in convolutional neural networks — a comparative study with CIFAR-10 data[C]. 2018 Fifth International Conference on Emerging Applications of Information Technology (EAIT), Kolkata, India, 2018: 1–5.
    [17] CAI Ningning, MA Can, WANG Weiping et al. Effective Self Attention modeling for aspect based sentiment analysis[C]. 19th International Conference on Computational Science, Faro, Portugal, 2019: 3–14.
    [18] SHARAFALDIN I, LASHKARI A H, and GHORBANI A A. A detailed analysis of the CICIDS2017 data set[C]. 4th International Conference on Information Systems Security and Privacy, Funchal-Madeira, Portugal, 2019: 172–188.
    [19] SHARAFALDIN I, LASHKARI A H, and GHORBANI A A. Toward generating a new intrusion detection dataset and intrusion traffic characterization[C]. The 4th International Conference on Information Systems Security and Privacy, Funchal-Madeira, Portugal, 2018: 108–116.
    [20] ZHU Mingyi, YE Kejiang, WANG Yang, et al. A deep learning approach for network anomaly detection based on AMF-LSTM[C]. The 15th IFIP WG 10.3 International Conference on Network and Parallel Computing, Muroran, Japan, 2018: 137–141.
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  1022
  • HTML全文浏览量:  730
  • PDF下载量:  216
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-13
  • 修回日期:  2023-02-20
  • 录用日期:  2023-02-28
  • 网络出版日期:  2023-03-06
  • 刊出日期:  2023-12-26

目录

    /

    返回文章
    返回