高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于双通道非线性反馈架构的模拟域功率放大器线性化技术

全欣 张梦瑶 刘简 蒲云逸 刘颖 邵士海 唐友喜

全欣, 张梦瑶, 刘简, 蒲云逸, 刘颖, 邵士海, 唐友喜. 一种基于双通道非线性反馈架构的模拟域功率放大器线性化技术[J]. 电子与信息学报, 2023, 45(12): 4211-4217. doi: 10.11999/JEIT221289
引用本文: 全欣, 张梦瑶, 刘简, 蒲云逸, 刘颖, 邵士海, 唐友喜. 一种基于双通道非线性反馈架构的模拟域功率放大器线性化技术[J]. 电子与信息学报, 2023, 45(12): 4211-4217. doi: 10.11999/JEIT221289
QUAN Xin, ZHANG Mengyao, LIU Jian, PU Yunyi, LIU Ying, SHAO Shihai, TANG Youx​​​​​​​i. Linearization of Analog Domain Power Amplifier Based on Two-channel Nonlinear Feedback Architecture[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4211-4217. doi: 10.11999/JEIT221289
Citation: QUAN Xin, ZHANG Mengyao, LIU Jian, PU Yunyi, LIU Ying, SHAO Shihai, TANG Youx​​​​​​​i. Linearization of Analog Domain Power Amplifier Based on Two-channel Nonlinear Feedback Architecture[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4211-4217. doi: 10.11999/JEIT221289

一种基于双通道非线性反馈架构的模拟域功率放大器线性化技术

doi: 10.11999/JEIT221289
基金项目: 国家自然科学基金(62071094, 61901396)
详细信息
    作者简介:

    全欣:女,副教授,研究方向为全双工自干扰抑制

    张梦瑶:女,硕士生,研究方向为非线性干扰抑制处理、无线通信中的数字信号处理

    刘简:女,硕士生,研究方向为数字预失真、无线通信中的数字信号处理

    蒲云逸:男,硕士,研究方向为非线性信号处理、无线通信信号处理

    刘颖:男,副教授,研究方向为非线性信号处理、射频功率放大器线性化技术

    邵士海:男,教授,研究方向为全双工通信理论、可重构射频电路

    唐友喜:男,教授,研究方向为全双工通信理论、无线通信中的信号处理

    通讯作者:

    全欣 15881069748@139.com

  • 中图分类号: TN914.1

Linearization of Analog Domain Power Amplifier Based on Two-channel Nonlinear Feedback Architecture

Funds: The National Natural Science Foundation of China (62071094, 61901396)
  • 摘要: 该文提出一种在模拟域抑制功率放大器(PA)非线性失真的双通道非线性反馈架构,以改善PA线性度,减少邻道泄露。在该架构中,用于抑制非线性的电路包含非线性提取环路和反馈调整环路。非线性提取环路通过耦合器提取PA输入和输出信号,进行幅度和相位对齐后抵消线性信号,保留PA产生的非线性失真。反馈调整环路包含两条独立反馈通道,且信号通过非线性提取环路和反馈调整环路中两条通道分别反馈后的总时延具有两倍关系,使反馈环路呈现2阶Delta-Sigma结构形式,相比于单通道非线性反馈架构具有更好的失真抑制性能。并且通过所提方法配置反馈通道参数,可以实现不同目标频点下非线性失真的灵活抑制。最后设计了一个使用CMPA0060002F商用功放芯片的实验平台,对于带宽为40 MHz,载频为780 MHz的测试信号,在当前6 ns的硬件反馈时延条件下,可以使邻道功率泄露比(ACLR)单边带改善11 dB或双边带改善6 dB,且通过减小反馈时延能够取得更好的性能。
  • 图  1  双通道非线性反馈架构

    图  2  40 MHz带宽内白噪声抑制性能随反馈时延变化曲线

    图  3  所提架构对3个不同频点的白噪声抑制效果

    图  4  PA非线性抑制平台硬件架构

    图  5  所提架构对宽带高斯白噪声的抑制效果

    图  6  所提架构对40 MHz带宽输入信号的非线性校正效果

    表  1  链路器件选型表

    序号器件类型器件型号S参数仿真群时延(ns)
    1PACMPA0060002F0.30
    2放大器ZX60-H122+0.40
    3放大器ZKL-2+0.45
    4衰减器HMC346AMS8GE0.05
    5耦合器ZEDC-15-2B0.36
    6耦合器ZFDC-20-4+0.24
    7三合路器ZFSC-3-4+0.54
    8180°合路器SYPJ-2-13+0.10
    9功分器ZESC-2-11+0.23
    10移相器JSPHS-1000+0.96~1.8
    下载: 导出CSV

    表  2  双反馈功放非线性抑制实验结果

    条件反馈时延(ns)ACLR改善量(dB)
    短时延通道长时延通道
    主信道陷波@780 MHz6.213.36.06.0
    左邻道陷波@740 MHz5.410.411.26.5
    下载: 导出CSV
  • [1] AKPAKWU G A, SILVA B J, HANCKE G P, et al. A survey on 5G networks for the internet of things: Communication technologies and challenges[J]. IEEE Access, 2018, 6: 3619–3647. doi: 10.1109/ACCESS.2017.2779844
    [2] NGUYEN D C, DING M, PATHIRANA P N, et al. 6G internet of things: A comprehensive survey[J]. IEEE Internet of Things Journal, 2022, 9(1): 359–383. doi: 10.1109/JIOT.2021.3103320
    [3] 霍晓磊, 赵宏志, 刘颖, 等. 基于干扰信号带外分量卷积反演的邻道干扰抑制[J]. 电子与信息学报, 2020, 42(10): 2437–2444. doi: 10.11999/JEIT190704

    HUO Xiaolei, ZHAO Hongzhi, LIU Ying, et al. Adjacent channel interference suppression based on deconvolution of interference signal's out-of-band component[J]. Journal of Electronics &Information Technology, 2020, 42(10): 2437–2444. doi: 10.11999/JEIT190704
    [4] 肖尚辉, 刘简, 胡波, 等. 基于低采样率数模转换器和模数转换器的太赫兹发射机线性化[J]. 电子与信息学报, 2023, 45(2): 718–724. doi: 10.11999/JEIT211304

    XIAO Shanghui, LIU Jian, HU Bo, et al. Linearization of terahertz transmitter based on low sampling rate DAC and ADC[J]. Journal of Electronics &Information Technology, 2023, 45(2): 718–724. doi: 10.11999/JEIT211304
    [5] LIU Ying, PAN Wensheng, SHAO Shihai, et al. A general digital predistortion architecture using constrained feedback bandwidth for wideband power amplifiers[J]. IEEE Transactions on Microwave Theory and Techniques, 2015, 63(5): 1544–1555. doi: 10.1109/TMTT.2015.2416184
    [6] 兰榕, 胡欣, 邹峰, 等. 基于循环平稳特性的欠采样宽带数字预失真研究[J]. 电子与信息学报, 2020, 42(5): 1274–1280. doi: 10.11999/JEIT190105

    LAN Rong, HU Xin, ZOU Feng, et al. Research of low sampling frequency broadband digital predistortion with cyclostationary characteristics[J]. Journal of Electronics &Information Technology, 2020, 42(5): 1274–1280. doi: 10.11999/JEIT190105
    [7] OZAN S, NAIR M, CAPPELLO T, et al. Low-noise amplifier with wideband feedforward linearisation for mid-band 5G receivers[C]. IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), Ha Long, Vietnam, 2020: 125–128.
    [8] PAN Wensheng, LI Chenxing, QUAN Xin, et al. A linearized power amplifier with nonlinear feedback architecture[J]. Microwave and Optical Technology Letters, 2020, 62(4): 1552–1556. doi: 10.1002/mop.32232
    [9] WOO Y Y, KIM J, YI J, et al. Adaptive digital feedback predistortion technique for linearizing power amplifiers[J]. IEEE Transactions on Microwave Theory and Techniques, 2007, 55(5): 932–940. doi: 10.1109/TMTT.2007.895145
    [10] 詹鹏, 秦开宇, 蔡顺燕. 单路反馈射频功放预失真线性化方法[J]. 电子与信息学报, 2011, 33(8): 2023–2027. doi: 10.3724/SP.J.1146.2010.01347

    ZHAN Peng, QIN Kaiyu, and CAI Shunyan. Single feedback predistortion linearization method for RF power amplifier[J]. Journal of Electronics &Information Technology, 2011, 33(8): 2023–2027. doi: 10.3724/SP.J.1146.2010.01347
    [11] LIU Ying, MA Wanzhi, QUAN Xin, et al. An architecture for capturing the nonlinear distortion of analog self-interference cancellers in full-duplex radios[J]. IEEE Microwave and Wireless Components Letters, 2017, 27(9): 845–847. doi: 10.1109/LMWC.2017.2734775
    [12] BOO H H, CHUNG S W, and DAWSON J L. Digitally assisted feedforward compensation of cartesian-feedback power-amplifier systems[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2011, 58(8): 457–461. doi: 10.1109/TCSII.2011.2158274
    [13] LIU Xin, CHEN Wenhua, CHU Jiaming, et al. Multi-stream spatial digital predistortion for fully-connected hybrid beamforming massive MIMO transmitters[C]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2021, 68(7): 2998–3011.
    [14] KANG S G, LEE I K, and YOO K S. Analysis and design of feedforward power amplifier[C]. 1997 IEEE MTT-S International Microwave Symposium Digest, Denver, USA, 1997: 1519–1522.
    [15] CHOI H, JEONG Y, KIM C D, et al. Bandwidth enhancement of an analog feedback amplifier by employing a negative group delay circuit[J]. Progress in Electromagnetics Research, 2010, 105: 253–272. doi: 10.2528/PIER10041808
    [16] DE LA ROSA J M. Sigma-delta modulators: Tutorial overview, design guide, and state-of-the-art survey[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2011, 58(1): 1–21. doi: 10.1109/TCSI.2010.2097652
    [17] YI Pinyun, LIANG Yuhua, LIU Shubin, et al. A 625kHz-BW, 79.3dB-SNDR second-order noise-shaping SAR ADC using high-efficiency error-feedback structure[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2022, 69(3): 859–863. doi: 10.1109/TCSII.2021.3121245
    [18] SCHREIER R, PAVAN S, and TEMES G C. Second-order delta-sigma modulation[M]. SCHREIER R and TEMES G C. Understanding Delta-Sigma Data Converters. Piscataway: Wiley-IEEE Press, 2005: 63–82.
    [19] LI Shaolan, QIAO Bo, GANDARA M, et al. A 13-ENOB second-order noise-shaping SAR ADC realizing optimized NTF zeros using the error-feedback structure[J]. IEEE Journal of Solid-State Circuits, 2018, 53(12): 3484–3496. doi: 10.1109/JSSC.2018.2871081
    [20] 3GPP. 3GPP TS 38.104NR; Base Station (BS) radio transmission and reception[S]. 2022.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  403
  • HTML全文浏览量:  249
  • PDF下载量:  135
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-11
  • 修回日期:  2023-04-12
  • 网络出版日期:  2023-04-19
  • 刊出日期:  2023-12-26

目录

    /

    返回文章
    返回