高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

约减轮数分组密码LEA的差分分析

李艳俊 李寅霜 刘健 王克

李艳俊, 李寅霜, 刘健, 王克. 约减轮数分组密码LEA的差分分析[J]. 电子与信息学报, 2023, 45(10): 3737-3744. doi: 10.11999/JEIT221282
引用本文: 李艳俊, 李寅霜, 刘健, 王克. 约减轮数分组密码LEA的差分分析[J]. 电子与信息学报, 2023, 45(10): 3737-3744. doi: 10.11999/JEIT221282
LI Yanjun, LI Yinshuang, LIU Jian, WANG Ke. Differential Analysis of Reduced Rounds Block Cipher LEA[J]. Journal of Electronics & Information Technology, 2023, 45(10): 3737-3744. doi: 10.11999/JEIT221282
Citation: LI Yanjun, LI Yinshuang, LIU Jian, WANG Ke. Differential Analysis of Reduced Rounds Block Cipher LEA[J]. Journal of Electronics & Information Technology, 2023, 45(10): 3737-3744. doi: 10.11999/JEIT221282

约减轮数分组密码LEA的差分分析

doi: 10.11999/JEIT221282
基金项目: 北京高校“高精尖”学科建设项目(20210101Z0401)
详细信息
    作者简介:

    李艳俊:女,副教授,博士,研究方向为分组密码的设计与分析、密码协议设计与分析

    李寅霜:女,硕士生,研究方向为分组密码分析方法

    刘健:男,高级工程师,硕士,研究方向为网络与信息安全、商用密码应用安全性评估等

    王克:男,讲师,博士,研究方向为公钥密码的设计与分析

    通讯作者:

    李寅霜 511228211@qq.com

  • 中图分类号: TN918.1; TP309.2

Differential Analysis of Reduced Rounds Block Cipher LEA

Funds: The Advanced Discipline Construction Project of Beijing Universities (20210101Z0401)
  • 摘要: LEA算法是面向软件的轻量级加密算法,在2019年成为 ISO/IEC 国际标准轻量级加密算法,具有快速加密、占用运算资源少等优点。该文基于多条输入输出差分相同的路径计算了差分概率,首次对LEA-128进行了13轮和14轮的密钥恢复攻击;采用提前抛弃技术,分别在12轮和13轮差分特征后面添加了1轮,恢复了96 bit密钥;其中13轮的密钥恢复攻击数据复杂度为298个明文,时间复杂度为286.7次13轮LEA-128解密;14轮的密钥恢复攻击数据复杂度为2118个明文,时间复杂度为2110.6次14轮LEA-128解密。
  • 图  1  LEA的轮变换

    图  2  存在的差分向量模式

    图  3  模加差分特性的线性不等式刻画

    图  4  13轮密钥恢复攻击

    图  5  14轮密钥恢复攻击

    表  1  LEA-128攻击分析结果比较

    参考文献攻击方法区分器轮数攻击轮数时间复杂度数据复杂度
    [1]差分分析11122842100
    本文差分分析12/1313/14285.7/2110.6298/2118
    [1]不可能差分分析1012
    [1]零相关线性密码分析79
    [9]零相关线性密码分析9921272127
    [11]零相关线性密码分析10
    [1]积分分析69
    [12]积分分析7/8296/2118
    [13]积分分析8/91021202124
    [10]积分分析7296
    [1]飞去来器分析方法715
    [14]差分线性密码分析12
    下载: 导出CSV
    算法1 最优特征的差分概率
     输入:对于 r 轮密码的原始MILP模型。
     输出:最优特征的概率多项式。
     (1) 求解原始MILP模型并获得最优差分特征的概率 d
       $(\varDelta _{ {\text{in} } }^ * ,\varDelta _{ {\text{out} } }^ * )$;
     (2) 令 j = –1 ;
     (3) 重复:
     (4)  j = j + 1 ;
     (5)  将原始MILP模型中的输入输出差分设为$(\varDelta _{ {\text{in} } }^ * ,\varDelta _{ {\text{out} } }^ * )$;
     (6)  令原始MILP模型中的目标函数 = d + j
     (7)  求解模型和不同特征的数量值$ {p_j} $;
     (8) 直到${p_j}{2^{ - (d + j)} } \ge \displaystyle\sum\limits_{i = 0}^{j - 1} { {p_i}{2^{ - (d + i)} } }$;
     (9) 令N = j – 1;
     (10) 返回:概率多项式。
    下载: 导出CSV

    表  2  LEA算法的12轮差分特征及概率

    轮数$\Delta {X_0}$$ \Delta {X_{\text{1}}} $$\Delta {X_{\text{2}}}$$\Delta {X_{\text{3}}}$${\log _2}p$
    0C0000000C04000804040001040400012
    1800100008000000C40000004C0000000–13
    202001800820000008000000080010000–8
    300300100001000000000200002001800–4
    4000200000001FF000040010000300100–15
    500020000000200000002000000020000–25
    600000000000000000000000000020000–5
    700000000000000000000400000000000–1
    800000000000002000000080000000000–2
    900040000000000300000010000000000–5
    1008002000800000080000002000040000–7
    1100401110C40000000000800408002000–8
    1280222188222004008100140000401110–14
    下载: 导出CSV

    表  3  LEA算法的13轮差分特征及概率

    轮数$\Delta {X_0}$$ \Delta {X_{\text{1}}} $$\Delta {X_{\text{2}}}$$\Delta {X_{\text{3}}}$${\log _2}p$
    0C0000000C04000804040001040400012
    1800100008000000C40000004C0000000–13
    202001800820000008000000080010000–8
    300300100001000000000200002001800–4
    4000200000001FF000040010000300100–15
    500020000000200000002000000020000–25
    600000000000000000000000000020000–5
    700000000000000000000400000000000–1
    800000000000002000000080000000000–2
    900040000000000300000010000000000–5
    1008002000800000080000002000040000–7
    1100401110C40000000000800408002000–8
    1280222188222004008100140000401110–14
    130449114405190080102800A180222088–20
    下载: 导出CSV
  • [1] HONG D, LEE J K, KIM D C, et al. LEA: A 128-bit block cipher for fast encryption on common processors[C]. The 14th International Workshop on Information Security Applications, Jeju Island, Korea, 2013: 3–27.
    [2] BEAULIEU R, SHORS D, SMITH J, et al. The SIMON and SPECK lightweight block ciphers[C]. The 52nd Annual Design Automation Conference, San Francisco, USA, 2015: 175.
    [3] HONG D, SUNG J, HONG S, et al. HIGHT: A new block cipher suitable for low-resource device[C]. The 8th International Workshop on Cryptographic Hardware and Embedded Systems, Yokohama, Japan, 2006: 46–59.
    [4] GUO Ying, LI Lang, and LIU Botao. Shadow: A lightweight block cipher for IoT nodes[J]. IEEE Internet of Things Journal, 2021, 8(16): 13014–13023. doi: 10.1109/JIOT.2021.3064203
    [5] KANG Man, LI Yongqiang, JIAO Lin, et al. Differential analysis of ARX block ciphers based on an improved genetic algorithm[J]. Chinese Journal of Electronics, 2023, 32(2): 225–236. doi: 10.23919/cje.2021.00.415
    [6] AZIMI S A, RANEA A, SALMASIZADEH M, et al. A bit-vector differential model for the modular addition by a constant and its applications to differential and impossible-differential cryptanalysis[J]. Designs, Codes and Cryptography, 2022, 90(8): 1797–1855. doi: 10.1007/s10623-022-01074-8
    [7] COUTINHO M and SOUZA NETO T C. Improved linear approximations to ARX ciphers and attacks against ChaCha[C]. The 40th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, 2021: 711–740.
    [8] WANG Feifan and WANG Gaoli. Improved differential-linear attack with application to round-reduced Speck32/64[C]. The 20th International Conference on Applied Cryptography and Network Security, Rome, Italy, 2022: 792–808.
    [9] ZHANG Kai, GUAN Jie, and HU Bin. Zero correlation linear cryptanalysis on LEA family ciphers[J]. Journal of Communications, 2016, 11(7): 677–685. doi: 10.12720/jcm.11.7.677-685
    [10] SUN Ling, WANG Wei, LIU Ru, et al. MILP-aided bit-based division property for ARX ciphers[J]. Science China Information Sciences, 2018, 61(11): 118102. doi: 10.1007/s11432-017-9321-7
    [11] 崔婷婷. 分组密码算法和流密码算法的安全性分析[D]. [博士论文], 山东大学, 2018.

    CUI Tingting. Security analysis of block ciphers and stream ciphers[D]. [Ph. D. dissertation], Shandong University, 2018.
    [12] 孙玲. 分组密码攻击模型的构建和自动化密码分析[D]. [博士论文], 山东大学, 2019.

    SUN Ling. The construction of attack model for block ciphers and automatic cryptanalysis[D]. [Ph. D. dissertation], Shandong University, 2019.
    [13] 李航, 任炯炯, 陈少真. 减轮LEA密码算法的积分攻击[J]. 电子学报, 2020, 48(1): 17–27. doi: 10.3969/j.issn.0372-2112.2020.01.003

    LI Hang, REN Jiongjiong, and CHEN Shaozhen. Integral attack on reduced-round LEA cipher[J]. Acta Electronica Sinica, 2020, 48(1): 17–27. doi: 10.3969/j.issn.0372-2112.2020.01.003
    [14] 刘晟源. 基于MILP对WARP、GOST2和LEA算法的密码分析[D]. [硕士论文], 华东师范大学, 2022.

    LIU Shengyuan. Cryptanalysis of WARP, GOST2 and LEA algorithms based on MILP[D]. [Master dissertation], East China Normal University, 2022.
    [15] MOUHA N, WANG Qingju, GU Dawu, et al. Differential and linear cryptanalysis using mixed-integer linear programming[C]. The 7th International Conference on Information Security and Cryptology, Beijing, China, 2011: 57–76.
    [16] WU Shengbao and WANG Mingsheng. Security evaluation against differential cryptanalysis for block cipher structures[R]. Paper 2011/551, 2011.
    [17] SUN Siwei, HU Lei, WANG Peng, et al. Automatic security evaluation and (related-key) differential characteristic search: Application to SIMON, PRESENT, LBlock, DES(L) and other bit-oriented block ciphers[C]. The 20th International Conference on the Theory and Application of Cryptology and Information Security, Taipei, China, 2014: 158–178.
    [18] SUN Siwei, HU Lei, WANG Meiqin, et al. Towards finding the best characteristics of some bit-oriented block ciphers and automatic enumeration of (related-key) differential and linear characteristics with predefined properties[R]. Paper 2014/747, 2014: 747.
    [19] LIPMAA H and MORIAI S. Efficient algorithms for computing differential properties of addition[C]. The 8th International Workshop on Fast Software Encryption, Yokohama, Japan, 2001: 336–350.
    [20] FU Kai, WANG Meiqin, GUO Yinghua, et al. MILP-based automatic search algorithms for differential and linear trails for speck[C]. The 23rd International Conference on Fast Software Encryption, Bochum, Germany, 2016: 268–288.
    [21] LAI Xuejia, MASSEY J L, and MURPHY S. Markov ciphers and differential cryptanalysis[C]. 1991 Workshop on the Theory and Application of Cryptographic Techniques, Brighton, UK, 1991: 17–38.
    [22] BAGHERZADEH E and AHMADIAN Z. MILP‐based automatic differential search for LEA and HIGHT block ciphers[J]. IET Information Security, 2020, 14(5): 595–603. doi: 10.1049/iet-ifs.2018.5539
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  518
  • HTML全文浏览量:  409
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-10
  • 修回日期:  2023-04-19
  • 网络出版日期:  2023-04-24
  • 刊出日期:  2023-10-31

目录

    /

    返回文章
    返回