## 留言板

 引用本文: 李艳俊, 李寅霜, 刘健, 王克. 约减轮数分组密码LEA的差分分析[J]. 电子与信息学报, 2023, 45(10): 3737-3744.
LI Yanjun, LI Yinshuang, LIU Jian, WANG Ke. Differential Analysis of Reduced Rounds Block Cipher LEA[J]. Journal of Electronics & Information Technology, 2023, 45(10): 3737-3744. doi: 10.11999/JEIT221282
 Citation: LI Yanjun, LI Yinshuang, LIU Jian, WANG Ke. Differential Analysis of Reduced Rounds Block Cipher LEA[J]. Journal of Electronics & Information Technology, 2023, 45(10): 3737-3744.

## 约减轮数分组密码LEA的差分分析

##### doi: 10.11999/JEIT221282

###### 通讯作者: 李寅霜　511228211@qq.com
• 中图分类号: TN918.1; TP309.2

## Differential Analysis of Reduced Rounds Block Cipher LEA

Funds: The Advanced Discipline Construction Project of Beijing Universities (20210101Z0401)
• 摘要: LEA算法是面向软件的轻量级加密算法，在2019年成为 ISO/IEC 国际标准轻量级加密算法，具有快速加密、占用运算资源少等优点。该文基于多条输入输出差分相同的路径计算了差分概率，首次对LEA-128进行了13轮和14轮的密钥恢复攻击；采用提前抛弃技术，分别在12轮和13轮差分特征后面添加了1轮，恢复了96 bit密钥；其中13轮的密钥恢复攻击数据复杂度为298个明文，时间复杂度为286.7次13轮LEA-128解密；14轮的密钥恢复攻击数据复杂度为2118个明文，时间复杂度为2110.6次14轮LEA-128解密。
• 图  1  LEA的轮变换

图  2  存在的差分向量模式

图  3  模加差分特性的线性不等式刻画

图  4  13轮密钥恢复攻击

图  5  14轮密钥恢复攻击

•  [1] HONG D, LEE J K, KIM D C, et al. LEA: A 128-bit block cipher for fast encryption on common processors[C]. The 14th International Workshop on Information Security Applications, Jeju Island, Korea, 2013: 3–27. [2] BEAULIEU R, SHORS D, SMITH J, et al. The SIMON and SPECK lightweight block ciphers[C]. The 52nd Annual Design Automation Conference, San Francisco, USA, 2015: 175. [3] HONG D, SUNG J, HONG S, et al. HIGHT: A new block cipher suitable for low-resource device[C]. The 8th International Workshop on Cryptographic Hardware and Embedded Systems, Yokohama, Japan, 2006: 46–59. [4] GUO Ying, LI Lang, and LIU Botao. Shadow: A lightweight block cipher for IoT nodes[J]. IEEE Internet of Things Journal, 2021, 8(16): 13014–13023. [5] KANG Man, LI Yongqiang, JIAO Lin, et al. Differential analysis of ARX block ciphers based on an improved genetic algorithm[J]. Chinese Journal of Electronics, 2023, 32(2): 225–236. [6] AZIMI S A, RANEA A, SALMASIZADEH M, et al. A bit-vector differential model for the modular addition by a constant and its applications to differential and impossible-differential cryptanalysis[J]. Designs, Codes and Cryptography, 2022, 90(8): 1797–1855. [7] COUTINHO M and SOUZA NETO T C. Improved linear approximations to ARX ciphers and attacks against ChaCha[C]. The 40th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, 2021: 711–740. [8] WANG Feifan and WANG Gaoli. Improved differential-linear attack with application to round-reduced Speck32/64[C]. The 20th International Conference on Applied Cryptography and Network Security, Rome, Italy, 2022: 792–808. [9] ZHANG Kai, GUAN Jie, and HU Bin. Zero correlation linear cryptanalysis on LEA family ciphers[J]. Journal of Communications, 2016, 11(7): 677–685. [10] SUN Ling, WANG Wei, LIU Ru, et al. MILP-aided bit-based division property for ARX ciphers[J]. Science China Information Sciences, 2018, 61(11): 118102. [11] 崔婷婷. 分组密码算法和流密码算法的安全性分析[D]. [博士论文], 山东大学, 2018.CUI Tingting. Security analysis of block ciphers and stream ciphers[D]. [Ph. D. dissertation], Shandong University, 2018. [12] 孙玲. 分组密码攻击模型的构建和自动化密码分析[D]. [博士论文], 山东大学, 2019.SUN Ling. The construction of attack model for block ciphers and automatic cryptanalysis[D]. [Ph. D. dissertation], Shandong University, 2019. [13] 李航, 任炯炯, 陈少真. 减轮LEA密码算法的积分攻击[J]. 电子学报, 2020, 48(1): 17–27.LI Hang, REN Jiongjiong, and CHEN Shaozhen. Integral attack on reduced-round LEA cipher[J]. Acta Electronica Sinica, 2020, 48(1): 17–27. [14] 刘晟源. 基于MILP对WARP、GOST2和LEA算法的密码分析[D]. [硕士论文], 华东师范大学, 2022.LIU Shengyuan. Cryptanalysis of WARP, GOST2 and LEA algorithms based on MILP[D]. [Master dissertation], East China Normal University, 2022. [15] MOUHA N, WANG Qingju, GU Dawu, et al. Differential and linear cryptanalysis using mixed-integer linear programming[C]. The 7th International Conference on Information Security and Cryptology, Beijing, China, 2011: 57–76. [16] WU Shengbao and WANG Mingsheng. Security evaluation against differential cryptanalysis for block cipher structures[R]. Paper 2011/551, 2011. [17] SUN Siwei, HU Lei, WANG Peng, et al. Automatic security evaluation and (related-key) differential characteristic search: Application to SIMON, PRESENT, LBlock, DES(L) and other bit-oriented block ciphers[C]. The 20th International Conference on the Theory and Application of Cryptology and Information Security, Taipei, China, 2014: 158–178. [18] SUN Siwei, HU Lei, WANG Meiqin, et al. Towards finding the best characteristics of some bit-oriented block ciphers and automatic enumeration of (related-key) differential and linear characteristics with predefined properties[R]. Paper 2014/747, 2014: 747. [19] LIPMAA H and MORIAI S. Efficient algorithms for computing differential properties of addition[C]. The 8th International Workshop on Fast Software Encryption, Yokohama, Japan, 2001: 336–350. [20] FU Kai, WANG Meiqin, GUO Yinghua, et al. MILP-based automatic search algorithms for differential and linear trails for speck[C]. The 23rd International Conference on Fast Software Encryption, Bochum, Germany, 2016: 268–288. [21] LAI Xuejia, MASSEY J L, and MURPHY S. Markov ciphers and differential cryptanalysis[C]. 1991 Workshop on the Theory and Application of Cryptographic Techniques, Brighton, UK, 1991: 17–38. [22] BAGHERZADEH E and AHMADIAN Z. MILP‐based automatic differential search for LEA and HIGHT block ciphers[J]. IET Information Security, 2020, 14(5): 595–603.

##### 计量
• 文章访问数:  187
• HTML全文浏览量:  165
• PDF下载量:  47
• 被引次数: 0
##### 出版历程
• 收稿日期:  2022-10-10
• 修回日期:  2023-04-19
• 网络出版日期:  2023-04-24
• 刊出日期:  2023-10-31

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈