高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于上下文感知跨层特征融合的光场图像显著性检测

邓慧萍 曹召洋 向森 吴谨

邓慧萍, 曹召洋, 向森, 吴谨. 基于上下文感知跨层特征融合的光场图像显著性检测[J]. 电子与信息学报, 2023, 45(12): 4489-4498. doi: 10.11999/JEIT221270
引用本文: 邓慧萍, 曹召洋, 向森, 吴谨. 基于上下文感知跨层特征融合的光场图像显著性检测[J]. 电子与信息学报, 2023, 45(12): 4489-4498. doi: 10.11999/JEIT221270
DENG Huiping, CAO Zhaoyang, XIANG Sen, WU Jin. Saliency Detection Based on Context-aware Cross-layer Feature Fusion for Light Field Images[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4489-4498. doi: 10.11999/JEIT221270
Citation: DENG Huiping, CAO Zhaoyang, XIANG Sen, WU Jin. Saliency Detection Based on Context-aware Cross-layer Feature Fusion for Light Field Images[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4489-4498. doi: 10.11999/JEIT221270

基于上下文感知跨层特征融合的光场图像显著性检测

doi: 10.11999/JEIT221270
详细信息
    作者简介:

    邓慧萍:女,副教授,研究方向为3D视频与图像的处理、机器学习、3维信息测量、视频图像质量评估

    曹召洋:男,硕士生,研究方向为图形图像处理、显著性检测

    向森:男,副教授,研究方向为3D视频与图像的处理、机器学习、3维信息测量、视频图像质量评估

    吴谨:女,教授,研究方向为图像处理与模式识别、信号处理与多媒体通信、检测技术与自动化装置

    通讯作者:

    曹召洋 czy1525073129@163.com

  • 中图分类号: TN911.73; TP391

Saliency Detection Based on Context-aware Cross-layer Feature Fusion for Light Field Images

  • 摘要: 光场图像的显著性检测是视觉跟踪、目标检测、图像压缩等应用中的关键技术。然而,现有深度学习方法在处理特征时,忽略特征差异和全局上下文信息,导致显著图模糊,甚至在前景与背景颜色、纹理相似或者背景杂乱的场景中,存在检测对象不完整以及背景难抑制的问题,因此该文提出一种基于上下文感知跨层特征融合的光场图像显著性检测网络。首先,构建跨层特征融合模块自适应地从输入特征中选择互补分量,减少特征差异,避免特征不准确整合,以更有效地融合相邻层特征和信息性系数;同时利用跨层特征融合模块构建了并行级联反馈解码器(PCFD),采用多级反馈机制重复迭代细化特征,避免特征丢失及高层上下文特征被稀释;最后构建全局上下文模块(GCM)产生多尺度特征以利用丰富的全局上下文信息,以此获取不同显著区域之间的关联并减轻高级特征的稀释。在最新光场数据集上的实验结果表明,该文方法在定量和定性上均优于所比较的方法,并且能够精确地从前/背景相似的场景中检测出完整的显著对象、获得清晰的显著图。
  • 图  1  本文整体框架

    图  2  多尺度通道卷积注意力的网络结构

    图  3  跨层特征融合模块的网络结构

    图  4  全局上下文模块的网络结构

    图  5  不同算法在 DUT-LF和LFSD数据集的 PR曲线结果对比

    图  6  不同算法在DUT-LF的定性比较

    图  7  消融实验视觉对比结果

    表  1  不同算法在DUT-LF数据集和LFSD数据集中的指标结果对比

    类别算法DUT-LFLFSD
    Sα↑Fβ↑Eϕ↑MAE↓Sα↑Fβ↑Eϕ↑MAE↓
    2dEGNet[16]0.8700.8640.9100.0620.8410.8210.8720.083
    DSS[17]0.7640.7280.8270.1280.6770.6440.7490.190
    3dS2MA[18]0.7290.6500.7770.1120.8370.8350.8330.094
    ATSA[19]0.7720.7290.8330.0840.8580.8660.9020.068
    4dRDFD[23]0.6580.5990.7740.1910.7860.8020.8340.136
    FPM[21]0.6750.6190.7450.1420.7910.8000.8390.134
    DILF[22]0.7050.6410.8050.1680.7550.7280.8100.168
    MAC[19]0.8040.7900.8630.1030.7820.7760.8320.127
    DLFS[6]0.8410.8010.8910.0760.7370.7150.8060.147
    LFNet[13]0.8780.8330.9100.0540.8200.8050.8820.092
    MoLF[14]0.8870.8430.9230.0520.7890.8190.8310.088
    ERNet[12]0.8990.8890.9420.0400.8340.8420.8880.082
    PANet[8]0.8970.8920.9410.0420.8420.8530.8820.080
    本文0.9000.8980.9520.0420.8530.8460.8800.080
    下载: 导出CSV

    表  2  不同模块在DUT-LF和LFSD数据集的消融研究

    实验模型DUT-LFLFSD
    Fβ↑MAE↓Fβ↑MAE↓
    aBaseline0.8510.0660.7760.118
    bBaseline +FR0.8620.0580.7940.108
    dBaseline +FR +PCFD0.8870.0500.8161.100
    fBaseline +FR +PCFD +GCM0.8960.0430.8420.082
    g本文0.8980.0420.8460.080
    下载: 导出CSV

    表  3  MCCA在DUT-LF和LFSD数据集的消融研究

    实验模块DUT-LFLFSD
    Fβ↑MAE↓Fβ↑MAE↓
    c+PCFD(w/o MCCA)0.8710.0580.8020.107
    d+PCFD(with MCCA)0.8870.0500.8161.100
    e+GCM(w/o MCCA)0.8900.0460.8290.096
    f+GCM(with MCCA)0.8960.0430.8420.082
    下载: 导出CSV

    表  4  本文方法和其他方法复杂度比较

    算法主干尺寸(MB)FPS(帧/s)DUT-LFLFSD
    本文VGG-19175290.9000.853
    PANetVGG-1660110.8990.842
    ERNetVGG-1993140.8990.834
    LFNetVGG-19176130.8780.820
    MoLFVGG-19178240.8870.789
    S2MAVGG-1634790.7290.831
    EGNetResNet-50412210.8700.843
    下载: 导出CSV
  • [1] BORJI A, CHENG Mingming, JIANG Huaizhu, et al. Salient object detection: A benchmark[J]. IEEE Transactions on Image Processing, 2015, 24(12): 5706–5722. doi: 10.1109/TIP.2015.2487833
    [2] LI Xi, HU Weiming, SHEN Chunhua, et al. A survey of appearance models in visual object tracking[J]. ACM Transactions on Intelligent Systems and Technology, 2013, 4(4): 58. doi: 10.1145/2508037.2508039
    [3] HAN S and VASCONCELOS N. Object recognition with hierarchical discriminant saliency networks[J]. Frontiers in Computational Neuroscience, 2014, 8: 109. doi: 10.3389/FNCOM.2014.00109
    [4] LI Nianyi, YE Jinwei, JI Yu, et al. Saliency detection on light field[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 2806–2813.
    [5] ZHANG Jun, WANG Meng, LIN Liang, et al. Saliency detection on light field: A multi-cue approach[J]. ACM Transactions on Multimedia Computing, Communications, and Applications, 2017, 13(3): 32. doi: 10.1145/3107956
    [6] PIAO Yongri, RONG Zhengkun, ZHANG Miao, et al. Deep light-field-driven saliency detection from a single view[C]. The 28th International Joint Conference on Artificial Intelligence, Macao, China, 2019: 904–911.
    [7] WANG Tiantian, PIAO Yongri, LU Huchuan, et al. Deep learning for light field saliency detection[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, South Korea, 2019: 8837–8847.
    [8] PIAO Yongri, JIANG Yongyao, ZHANG Miao, et al. PANet: Patch-aware network for light field salient object detection[J]. IEEE Transactions on Cybernetics, 2023, 53(1): 379–391. doi: 10.1109/TCYB.2021.3095512
    [9] DAI Yimian, GIESEKE F, OEHMCKE S, et al. Attentional feature fusion[C]. 2021 IEEE Winter Conference on Applications of Computer Vision, Waikoloa, USA, 2021: 3559–3568.
    [10] 王安志, 任春洪, 何淋艳, 等. 基于多模态多级特征聚合网络的光场显著性目标检测[J]. 计算机工程, 2022, 48(7): 227–233,240. doi: 10.19678/j.issn.1000-3428.0061811

    WANG Anzhi, REN Chunhong, HE Linyan, et al. Light field salient object detection based on multi-modal multi-level feature aggregation network[J]. Computer Engineering, 2022, 48(7): 227–233,240. doi: 10.19678/j.issn.1000-3428.0061811
    [11] 冯洁, 王世刚, 韦健, 等. 结合相机阵列选择性光场重聚焦的显著性检测[J]. 中国光学, 2021, 14(3): 587–595. doi: 10.37188/CO.2020-0165

    FENG Jie, WANG Shigang, WEI Jian, et al. Saliency detection combined with selective light field refocusing of camera array[J]. Chinese Optics, 2021, 14(3): 587–595. doi: 10.37188/CO.2020-0165
    [12] PIAO Yongri, RONG Zhengkun, ZHANG Miao, et al. Exploit and replace: An asymmetrical two-stream architecture for versatile light field saliency detection[C]. The 34th AAAI Conference on Artificial Intelligence, New York, USA, 2020: 11865–11873.
    [13] ZHANG Miao, JI Wei, PIAO Yongri, et al. LFNet: Light field fusion network for salient object detection[J]. IEEE Transactions on Image Processing, 2020, 29: 6276–6287. doi: 10.1109/TIP.2020.2990341
    [14] ZHANG Miao, LI Jingjing, WEI Ji, et al. Memory-oriented decoder for light field salient object detection[C]. The 33rd International Conference on Neural Information Processing Systems, Vancouver, Canada, 2019: 81.
    [15] WANG Qilong, WU Banggu, ZHU Pengfei, et al. ECA-Net: Efficient channel attention for deep convolutional neural networks[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 2020: 11531–11539.
    [16] ZHAO Jiaxing, LIU Jingjing, FAN Dengping, et al. EGNet: Edge guidance network for salient object detection[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, South Korea, 2019: 8778–8787.
    [17] HOU Qibin, CHENG Mingming, HU Xiaowei, et al. Deeply supervised salient object detection with short connections[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 5300–5309.
    [18] LIU Nian, ZHANG Ni, and HAN Junwei. Learning selective self-mutual attention for RGB-D saliency detection[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 13753–13762.
    [19] ZHANG Miao, FEI Sunxiao, LIU Jie, et al. Asymmetric two-stream architecture for accurate RGB-D saliency detection[C]. The 16th European Conference on Computer Vision, Glasgow, UK, 2020: 374–390.
    [20] ZHANG Qiudan, WANG Shiqi, WANG Xu, et al. A multi-task collaborative network for light field salient object detection[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31(5): 1849–1861. doi: 10.1109/TCSVT.2020.3013119
    [21] 李爽, 邓慧萍, 朱磊, 等. 联合聚焦度和传播机制的光场图像显著性检测[J]. 中国图象图形学报, 2020, 25(12): 2578–2586. doi: 10.11834/jig.190675

    LI Shuang, DENG Huiping, ZHU Lei, et al. Saliency detection on a light field via the focusness and propagation mechanism[J]. Journal of Image and Graphics, 2020, 25(12): 2578–2586. doi: 10.11834/jig.190675
    [22] ZHANG Jun, WANG Meng, GAO Jun, et al. Saliency detection with a deeper investigation of light field[C]. The 24th International Conference on Artificial Intelligence, Buenos Aires, Argentina, 2015: 2212–2218.
    [23] WANG Xue, DONG Yingying, ZHANG Qi, et al. Region-based depth feature descriptor for saliency detection on light field[J]. Multimedia Tools and Applications, 2021, 80(11): 16329–16346. doi: 10.1007/s11042-020-08890-x
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  571
  • HTML全文浏览量:  293
  • PDF下载量:  120
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-08
  • 修回日期:  2023-02-17
  • 网络出版日期:  2023-03-14
  • 刊出日期:  2023-12-26

目录

    /

    返回文章
    返回