高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同难度任务下自我调节机制对心理负荷水平的影响

闫佳庆 李丹 邓金钊 顾恒 孙文浩 龙舟 李小俚

闫佳庆, 李丹, 邓金钊, 顾恒, 孙文浩, 龙舟, 李小俚. 不同难度任务下自我调节机制对心理负荷水平的影响[J]. 电子与信息学报, 2023, 45(8): 2780-2787. doi: 10.11999/JEIT221260
引用本文: 闫佳庆, 李丹, 邓金钊, 顾恒, 孙文浩, 龙舟, 李小俚. 不同难度任务下自我调节机制对心理负荷水平的影响[J]. 电子与信息学报, 2023, 45(8): 2780-2787. doi: 10.11999/JEIT221260
YAN Jiaqing, LI Dan, DENG Jinzhao, GU Heng, SUN Wenhao, LONG Zhou, LI Xiaoli. Impact of Self-regulation on Mental Workload under Different Difficulty Tasks[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2780-2787. doi: 10.11999/JEIT221260
Citation: YAN Jiaqing, LI Dan, DENG Jinzhao, GU Heng, SUN Wenhao, LONG Zhou, LI Xiaoli. Impact of Self-regulation on Mental Workload under Different Difficulty Tasks[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2780-2787. doi: 10.11999/JEIT221260

不同难度任务下自我调节机制对心理负荷水平的影响

doi: 10.11999/JEIT221260
基金项目: 北京市教委科技一般项目(KM202010009006)
详细信息
    作者简介:

    闫佳庆:男,博士,副教授,研究方向为神经信息与工程、计算神经科学

    李丹:女,硕士生,研究方向为神经信号处理

    邓金钊:男,硕士生,研究方向为计算神经科学

    顾恒:男,博士,研究方向为认知工效学

    孙文浩:男,硕士生,研究方向为神经信号处理

    龙舟:男,硕士生,研究方向为神经信号处理

    李小俚:男,教授,研究方向为神经工程、信号处理与计算神经科学

    通讯作者:

    李小俚 xiaoli@bnu.edu.cn

  • 中图分类号: TN911.7; R318

Impact of Self-regulation on Mental Workload under Different Difficulty Tasks

Funds: The Scientific Research Project of Beijing Educational Committee (KM202010009006)
  • 摘要: 持续的高水平心理负荷会导致不良的自我调节行为,但面向不同难度任务时自我调节行为对心理负荷的影响尚不明确。该文提出一种面向不同难度任务,基于自我调节行为的算术范式。被试者在每轮开始前可以根据自己的决策自行选择题目难度任务。范式可以观察在自我调节下,不同难度任务对被试者心理负荷的影响。该文使用事件相关电位(ERP)、功率谱密度(PSD)及脑电微状态进行分析。结果表明,在不同任务难度下,自我调节行为均引发了额外的心理负荷。自我调节行为主要与额叶区域有关,表现出P300振幅及theta,alpha频带功率增大,P600振幅减小。在中等难度任务下,自我调节引发的额外负荷较小,且促使被试者表现出更好的绩效水平。该文范式能够有效地识别出适合被试者的任务难度。在实际任务设计中,应考虑适合被试者的任务难度,减少不良自我调节行为的发生,提升被试者的绩效水平。
  • 图  1  范式流程图

    图  2  CPz处事件相关电位

    图  3  Pz处事件相关电位

    图  4  脑电地形图

    图  5  CPz处功率谱密度

    图  6  Pz处功率谱密度

    图  7  脑电微状态

    表  1  行为学数据分析结果

    正确数简单难度任务答题用时中等难度任务答题用时困难难度任务答题用时
    均值(n)方差(n)P均值
    (s)
    方差
    (s)
    P均值(s)方差(s)P均值(s)方差(s)P
    实验组41.173.220.0361.492.38<0.0012.593.58<0.0014.636.68<0.001
    对照组44.224.972.743.851.642.192.793.85
    下载: 导出CSV

    表  2  完成简单难度任务时P300分析结果

    额叶中央头顶区-顶叶顶叶
    均值(µV)方差(µV)P均值(µV)方差(µV)P均值(µV)方差(µV)P
    实验组4.172.780.0022.811.860.0112.362.12<0.001
    对照组2.982.183.662.53.92.97
    下载: 导出CSV

    表  3  完成简单难度任务时P600分析结果

    额叶中央头顶区中央头顶区-顶叶顶叶
    均值(µV)方差(µV)P均值(µV)方差(µV)P均值(µV)方差(µV)P均值(µV)方差(µV)P
    实验组0.881.910.032.122.540.0013.192.50.0072.532.790.001
    对照组–0.212.813.452.514.43.374.163.4
    下载: 导出CSV

    表  4  完成中等难度任务时P300分析结果

    额叶中央头顶区-顶叶顶叶
    均值(µV)方差(µV)P均值(µV)方差(µV)P均值(µV)方差(µV)P
    实验组4.331.750.0012.652.030.0352.672.510.037
    对照组2.913.493.422.683.542.91
    下载: 导出CSV

    表  5  完成中等难度任务时P600分析结果

    额叶中央头顶区中央头顶区-顶叶顶叶
    均值(µV)方差(µV)P均值(µV)方差(µV)P均值(µV)方差(µV)P均值(µV)方差(µV)P
    实验组0.632.730.0052.782.510.0133.482.90.0033.273.280.004
    对照组–0.743.543.762.574.983.484.843.6
    下载: 导出CSV
  • [1] INZLICHT M, WERNER K M, BRISKIN J L, et al. Integrating models of self-regulation[J]. Annual Review of Psychology, 2021, 72: 319–345. doi: 10.1146/annurev-psych-061020-105721
    [2] 文书锋, 汤冬玲, 俞国良. 情绪调节自我效能感的应用研究[J]. 心理科学进展, 2009, 32(3): 666–668. doi: 10.16719/j.cnki.1671-6981.2009.03.025

    WEN Shufeng, TANG Dongling, and YU Guoliang. The characteristics of regulatory emotional self-efficacy in Chinese graduate students[J]. Psychological Science, 2009, 32(3): 666–668. doi: 10.16719/j.cnki.1671-6981.2009.03.025
    [3] NIGG J T. Annual research review: On the relations among self-regulation, self-control, executive functioning, effortful control, cognitive control, impulsivity, risk-taking, and inhibition for developmental psychopathology[J]. Journal of Child Psychology and Psychiatry, 2017, 58(4): 361–383. doi: 10.1111/jcpp.12675
    [4] HEATHERTON T F. Neuroscience of self and self-regulation[J]. Annual Review of Psychology, 2011, 62: 363–390. doi: 10.1146/annurev.psych.121208.131616
    [5] PAUL K, POURTOIS G, VAN STEENBERGEN H, et al. Finding a balance: Modulatory effects of positive affect on attentional and cognitive control[J]. Current Opinion in Behavioral Sciences, 2021, 39: 136–141. doi: 10.1016/j.cobeha.2021.03.002
    [6] MACDONALD III A W, COHEN J D, STENGER V A, et al. Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control[J]. Science, 2000, 288(5472): 1835–1838. doi: 10.1126/science.288.5472.1835
    [7] 王益文, 林崇德. 额叶参与执行控制的ERP负荷效应[J]. 心理学报, 2005, 37(6): 723–728.

    WANG Yiwen and LIN Chongde. Frontal involvement to executive control: Load effects reflected by ERPs[J]. Acta Psychologica Sinica, 2005, 37(6): 723–728.
    [8] GALY E and MÉLAN C. Effects of cognitive appraisal and mental workload factors on performance in an arithmetic task[J]. Applied Psychophysiology and Biofeedback, 2015, 40(4): 313–325. doi: 10.1007/s10484-015-9302-0
    [9] DEHAIS F, LAFONT A, ROY R, et al. A neuroergonomics approach to mental workload, engagement and human performance[J]. Frontiers in Neuroscience, 2020, 14: 268. doi: 10.3389/fnins.2020.00268
    [10] BAKKER A B and DE VRIES J D. Job Demands-Resources theory and self-regulation: New explanations and remedies for job burnout[J]. Anxiety, Stress & Coping, 2021, 34(1): 1–21. doi: 10.1080/10615806.2020.1797695
    [11] 范伟, 杨博, 刘娟, 等. 自我欺骗: 为了调节个体心理状态[J]. 心理科学进展, 2017, 25(8): 1349–1359. doi: 10.3724/sp.J.1042.2017.01349

    FAN Wei, YANG Bo, LIU Juan, et al. Self-deception: For adjusting individual psychological states[J]. Advances in Psychological Science, 2017, 25(8): 1349–1359. doi: 10.3724/sp.J.1042.2017.01349
    [12] KÄTHNER I, WRIESSNEGGER S C, MÜLLER-PUTZ G R, et al. Effects of mental workload and fatigue on the P300, alpha and theta band power during operation of an ERP (P300) brain-computer interface[J]. Biological Psychology, 2014, 102: 118–129. doi: 10.1016/j.biopsycho.2014.07.014
    [13] DEHAIS F, DUPRÈS A, BLUM S, et al. Monitoring Pilot's mental workload using ERPs and spectral power with a six-dry-electrode EEG system in real flight conditions[J]. Sensors, 2019, 19(6): 1324. doi: 10.3390/s19061324
    [14] DEMURU M, LA CAVA S M, PANI S M, et al. A comparison between power spectral density and network metrics: An EEG study[J]. Biomedical Signal Processing and Control, 2020, 57: 101760. doi: 10.1016/j.bspc.2019.101760
    [15] MICHEL C M and KOENIG T. EEG microstates as a tool for studying the temporal dynamics of whole-brain neuronal networks: A review[J]. NeuroImage, 2018, 180: 577–593. doi: 10.1016/j.neuroimage.2017.11.062
    [16] KHANNA A, PASCUAL-LEONE A, and FARZAN F. Reliability of resting-state microstate features in electroencephalography[J]. PLoS One, 2014, 9(12): e114163. doi: 10.1371/journal.pone.0114163
    [17] SUBASI A and GURSOY M I. EEG signal classification using PCA, ICA, LDA and support vector machines[J]. Expert Systems with Applications, 2010, 37(12): 8659–8666. doi: 10.1016/j.eswa.2010.06.065
    [18] 陈强, 陈勋, 余凤琼. 基于独立向量分析的脑电信号中肌电伪迹的去除方法[J]. 电子与信息学报, 2016, 38(11): 2840–2847. doi: 10.11999/JEIT160209

    CHEN Qiang, CHEN Xun, and YU Fengqiong. Removal of muscle artifact from EEG data based on independent vector analysis[J]. Journal of Electronics &Information Technology, 2016, 38(11): 2840–2847. doi: 10.11999/JEIT160209
    [19] YANG Qiwei, TANG Ping, GU Ruolei, et al. Implicit emotion regulation affects outcome evaluation[J]. Social Cognitive and Affective Neuroscience, 2015, 10(6): 824–831. doi: 10.1093/scan/nsu124
    [20] BLISSETT S, SIBBALD M, KOK E, et al. Optimizing self-regulation of performance: Is mental effort a cue[J]. Advances in Health Sciences Education, 2018, 23(5): 891–898. doi: 10.1007/s10459-018-9838-x
    [21] RON-ANGEVIN R, GARCIA L, FERNÁNDEZ-RODRÍGUEZ Á, et al. Impact of speller size on a visual P300 brain-computer interface (BCI) system under two conditions of constraint for eye movement[J]. Computational Intelligence and Neuroscience, 2019, 2019: 7876248. doi: 10.1155/2019/7876248
    [22] ZHANG Zhonglu, LUO Yu, WANG Chaolun, et al. Identification and transformation difficulty in problem solving: Electrophysiological evidence from chunk decomposition[J]. Biological Psychology, 2019, 143: 10–21. doi: 10.1016/j.biopsycho.2019.02.004
    [23] MUN S, WHANG M, PARK S, et al. Effects of mental workload on involuntary attention: A somatosensory ERP study[J]. Neuropsychologia, 2017, 106: 7–20. doi: 10.1016/j.neuropsychologia.2017.08.021
    [24] PERGHER V, WITTEVRONGEL B, TOURNOY J, et al. Mental workload of young and older adults gauged with ERPs and spectral power during N-Back task performance[J]. Biological Psychology, 2019, 146: 107726. doi: 10.1016/j.biopsycho.2019.107726
    [25] HUANG Yihao, HE Feng, XU Minpeng, et al. Operate P300 speller when performing other task[J]. Journal of Neural Engineering, 2020, 17(5): 056022. doi: 10.1088/1741-2552/abb4a6
    [26] PUMA S, MATTON N, PAUBEL P V, et al. Using theta and alpha band power to assess cognitive workload in multitasking environments[J]. International Journal of Psychophysiology, 2018, 123: 111–120. doi: 10.1016/j.ijpsycho.2017.10.004
    [27] RAAIJMAKERS S F, BAARS M, SCHAAP L, et al. Effects of performance feedback valence on perceptions of invested mental effort[J]. Learning and Instruction, 2017, 51: 36–46. doi: 10.1016/j.learninstruc.2016.12.002
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  408
  • HTML全文浏览量:  226
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-29
  • 修回日期:  2023-04-18
  • 网络出版日期:  2023-04-27
  • 刊出日期:  2023-08-21

目录

    /

    返回文章
    返回